જો $A = \left[ {\begin{array}{*{20}{c}}
2&b&1 \\
b&{{b^2} + 1}&b \\
1&b&2
\end{array}} \right]$ કે જ્યાં $b > 0$. તો $\frac{{\det \left( A \right)}}{b}$ ની ન્યૂનતમ કિમંત મેળવો.
$2\sqrt 3$
$-2\sqrt 3$
$-\sqrt 3$
$\sqrt 3$
જો $k_1$, $k_2$ એ $k$ ની મહતમ અને ન્યૂનતમ કિમતો છે કે જેથી સમીકરણોની સહંતિ $x + ky = 1$ ; $kx + y = 2$; $x + y = k$ એ સુસંગત થાય છે તો $k_1^2 + k_2^2$ મેળવો.
જો $\left| {\begin{array}{*{20}{c}}
{\cos 2x}&{{{\sin }^2}x}&{\cos 4x} \\
{{{\sin }^2}x}&{\cos 2x}&{{{\cos }^2}x} \\
{\cos 4x}&{{{\cos }^2}x}&{\cos 2x}
\end{array}} \right| = {a_0} + {a_1}\sin x + {a_2}{\sin ^2}x + .....$ તો $a_0$ મેળવો.
જો સમીકરણની સંહતિ $3x - 2y + z = 0$, $\lambda x - 14y + 15z = 0$, $x + 2y + 3z = 0$ ને શૂન્યતર ઉકેલ હોય, તો $\lambda $ ની કિમત મેળવો.
જો $f\left( x \right) = \left| {\begin{array}{*{20}{c}}
{\sin \left( {x + \alpha } \right)}&{\sin \left( {x + \beta } \right)}&{\sin \left( {x + \gamma } \right)} \\
{\cos \left( {x + \alpha } \right)}&{\cos \left( {x + \beta } \right)}&{\cos \left( {x + \gamma } \right)} \\
{\sin \left( {\alpha + \beta } \right)}&{\sin \left( {\beta + \gamma } \right)}&{\sin \left( {\gamma + \alpha } \right)}
\end{array}} \right|$ અને $f(10) = 10$ તો $f(\pi)$ મેળવો.
જો $\left| {\,\begin{array}{*{20}{c}}{6i}&{ - 3i}&1\\4&{3i}&{ - 1}\\{20}&3&i\end{array}\,} \right| = x + iy$, તો . . . .