સાબિત કરો કે નિશ્ચાયક $\left|\begin{array}{ccc}x & \sin \theta & \cos \theta \\ -\sin \theta & -x & 1 \\ \cos \theta & 1 & x\end{array}\right|$ નું મૂલ્ય $\theta$ થી મુક્ત છે.
$\Delta=\left|\begin{array}{ccc}x & \sin \theta & \cos \theta \\ -\sin \theta & -x & 1 \\ \cos \theta & 1 & x\end{array}\right|$
$=x\left(x^{2}-1\right)-\sin \theta(-x \sin \theta-\cos \theta)+\cos \theta(-\sin \theta+x \cos \theta)$
$=x^{3}-x+x \sin ^{2} \theta+\sin \theta \cos \theta-\sin \theta \cos \theta+x \cos ^{2} \theta$
$=x^{3}-x+x\left(\sin ^{2} \theta+\cos ^{2} \theta\right)$
$=x^{3}-x+x$
$\left.=x^{3} \quad \text { (Independent of } \theta\right)$
Hence, $\Delta$ is independent of $\theta$
સુરેખ સમીકરણ સંહતિ $x+y+z=5, x+2 y+\lambda^2 z=9, x+3 y+\lambda z=\mu$ ધ્યાને લો, જ્યાં $\lambda, \mu \in \mathbb{R}$. તો નીચેના પૈકકી કયું વિધાન સાચું નથી?
$\Delta=\left|\begin{array}{ccc}0 & \sin \alpha & -\cos \alpha \\ -\sin \alpha & 0 & \sin \beta \\ \cos \alpha & -\sin \beta & 0\end{array}\right|$ નું મૂલ્ય શોધો.
જો $\left| {\,\begin{array}{*{20}{c}}1&k&3\\3&k&{ - 2}\\2&3&{ - 1}\end{array}\,} \right| = 0$,તો $k$ ની કિમત મેળવો.
$x$ નું મૂલ્ય શોધો : $\left|\begin{array}{ll}2 & 4 \\ 5 & 1\end{array}\right|=\left|\begin{array}{cc}2 x & 4 \\ 6 & x\end{array}\right|$
સમીકરણ સંહતિને $2{x_1} - 2{x_2} + {x_3} = \lambda {x_1}\;,\;2{x_1} - 3{x_2} + 2{x_3} = \lambda {x_2}\;\;,\;\; - {x_1} + 2{x_2} = \lambda {x_3}$ યોગ્ય ઉકેલ હોય તેવા બધાજ $\lambda $ ઓનો ગણ . . . . . . છે.