જો ${a_1},{a_2}...,{a_{10}}$ એ સમગુણોત્તર શ્રેણીના પદો હોય અને $\frac{{{a_3}}}{{{a_1}}} = 25$ થાય તો $\frac {{{a_9}}}{{{a_{ 5}}}}$ ની કિમત મેળવો.
$5^4$
$4(5^2)$
$5^3$
$2(5^2)$
સમાગુણોતર શ્રેણીનું $4$મું પદ $500$ છે અને તેનો સામાન્ય ગુણોતર $\frac{1}{m}, m \in N$ છે.ધારોકે આ સમગુણોતર શ્રેણીના પ્રથમ $n$ પદના સરવાળાને $S_n$ વડે દર્શાવાય છે.જો $S_6 > S_5+1$ અને $S_7 < S_6+\frac{1}{2}$ હોય,તો $m$ની શક્ય કિંમતોની સંખ્યા $.........$ છે.
સમગુણોત્તર શ્રેણી ધન પદો ધરાવે છે. દરેક પદ બરાબર તે પછીના બે પદોનો સરવાળો તો શ્રેણીનો સામાન્ય ગુણોત્તર કેટલો થાય ?
સમગુણોત્તર શ્રેણીમાં નિર્દેશિત પદોનો સરવાળો શોધો : $0.15,0.015,0.0015........$ પ્રથમ $20$ પદ
સમગુણોત્તર શ્રેણીના પ્રથમ દસ પદોનો સરવાળો $S_1$ છે અને તે પછીના દસ પદોનો ($11$ થી $20$) સરવાળો $S_2$ છે. તો સામાન્ય ગુણોત્તર કેટલો થશે ?
જો સમગુણોત્તર શ્રેણીનું પહેલું પદ $1$ અને તેના ત્રીજા અને પાંચમાં પદોનો સરવાળો $90$ હોય તો સામાન્ય ગુણોત્તર મેળવો.