શ્રેણી $1, 2, 2^2, ….2^n$ નો ગુણોત્તર મધ્યક...... છે.
${2^{\frac{2}{n}}}$
${2^{\frac{{n + 1}}{2}}}$
${2^{\frac{{n(n + 1)}}{2}}}$
${2^{\frac{{n - 1}}{2}}}$
જો $\text{y}\,=\,{{\text{x}}^{\frac{\text{1}}{\text{3}}}}\text{.}\,{{\text{x}}^{\frac{\text{1}}{\text{9}}}}\text{.}\,{{\text{x}}^{\frac{\text{1}}{\text{27}}}}\,.....\,\infty $ હોય, તો $\text{y}\,=......$
એક વધતી સમગુણોત્તર શ્રેણીમાં બીજા અને છઠ્ઠા પદોનો સરવાળો $\frac{25}{2}$ અને ત્રીજા અને પાંચમાં પદોનો ગુણાકાર $25$ છે. તો ચોથા, છઠ્ઠા અને આઠમા પદોનો સરવાળો ........... થાય.
શ્રેણી $0.7,0.77,0.777, . . . $ પ્રથમ $20$ પદોનો સરવાળો મેળવો.
સમગુણોત્તર શ્રેણીની પ્રથમ $3$ પદોનો સરવાળો $\frac{39}{10}$ છે અને તેમનો ગુણાકાર $1$ છે, તો સામાન્ય ગુણોત્તર અને તે પદો શોધો.
નીચેની શ્રેણીનાં પ્રથમ $n$ પદોનો સરવાળો શોધો :
$6+.66+.666+\ldots$