English
Hindi
8. Sequences and Series
hard

જો $\sum\limits_{{\text{r}}\, = \,{\text{1}}}^\infty  {\frac{1}{{{{(2r\, - \,1)}^2}}}\,\, = \,\,\frac{{{\pi ^2}}}{8}} $ હોય, તો $\,\sum\limits_{{\text{r}}\, = \,{\text{1}}}^\infty  {\frac{1}{{{r^2}}}\,\, = \,\,.........} $

A

$\frac{{{\pi ^2}}}{{24}}$

B

$\frac{{{\pi ^2}}}{3}$

C

$\frac{{{\pi ^2}}}{6}$

D

આપેલ પૈકી એકપણ નહિ.

Solution

અહી, $\,\,\frac{1}{{{1^2}}}\,\, + \,\,\frac{1}{{\,{3^2}}}\,\, + \,\,\frac{1}{{{5^2}}}\,\, + \,…..\,\,\infty \,\, = \,\frac{{{\pi ^2}}}{8} $

$x\,\,=\,\sum\limits_{{\text{r}}\, = \,{\text{1}}}^\infty  {\frac{1}{{{r^2}}}} $ લેતાં,

$x=\frac{1}{{{1^2}}}\,\, + \,\,\frac{1}{{{2^2}}}\,\, + \,\,\frac{1}{{{3^2}}}\,\, + \,\,…..\,\,\infty $ 

$x = \,\,\left( {\frac{1}{{{1^2}}}\,\, + \,\,\frac{1}{{{3^2}}}\,\, + \,\,\frac{1}{{\,{5^2}}}\, + \,…..\,\infty } \right)\, + \,\left( {\frac{1}{{{2^2}}}\,\, + \,\,\frac{1}{{{4^2}}}\,\, + \,\,\frac{1}{{{6^2}}}\,\, + \,\,…..\,\,\infty } \right)$

$x = \,\,\frac{{{\pi ^2}}}{8}\, + \,\,\frac{1}{4}\,\left( {\frac{1}{{{1^2}}}\,\, + \,\,\frac{1}{{{2^2}}}\,\, + \,\,\frac{1}{{{3^2}}}\,\, + ….\,\,\infty } \right)\,\,$

$x= \,\,\frac{{{\pi ^2}}}{8}\,\, + \,\,\frac{1}{4}\,x$

$x= \,\,\frac{{{\pi ^2}}}{6}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.