माना $a _{1}, a _{2}, \ldots \ldots, a _{10}$ एक गुणोत्तर श्रेढ़ी है। यदि $\frac{ a _{3}}{ a _{1}}=25$, तो $\frac{ a _{9}}{ a _{5}}$ बराबर है 

  • [JEE MAIN 2019]
  • A

    $5^4$

  • B

    $4(5^2)$

  • C

    $5^3$

  • D

    $2(5^2)$

Similar Questions

यदि किसी गुणोत्तर श्रेणी के तीन क्रमागत पदों का गुणनफल $216$ एवं दो-दो को लेकर उनके गुणनफलों का योग $156$ है, तो संख्यायें होंगी

यदि धनात्मक पदों की एक गुणोत्तर श्रेढ़ी के दूसरे, तीसरे तथा चौथे पदों का योगफल $3$ है तथा इसके छठे, सातवें और आठवें पदों का योगफल $243$ है, तो इस गुणोत्तर श्रेढ़ी के प्रथम $50$ पदों का योगफल है

  • [JEE MAIN 2020]

यदि किसी अनन्त गुणोत्तर श्रेणी के पदों का योग व इसके पदों के वर्गो का योग $3$ हो, तो प्रथम श्रेणी का सार्व-अनुपात है

यदि $x > 1,\;y > 1,{\rm{ }}z > 1$ गुणोत्तर श्रेणी में ($G.P$) हों, तो  $\frac{1}{{1 + {\rm{In}}\,x}},\;\frac{1}{{1 + {\rm{In}}\,y}},$ $\;\frac{1}{{1 + {\rm{In}}\,z}}$ होंगे

  • [IIT 1998]

$0.14189189189….$ को निम्न परिमेय संख्या के रूप में निरूपित कर सकते हैं