Let $\alpha $ and $\beta $ be the roots of the quadratic equation ${x^2}\,\sin \,\theta - x\,\left( {\sin \,\theta \cos \,\,\theta + 1} \right) + \cos \,\theta = 0\,\left( {0 < \theta < {{45}^o}} \right)$ , and $\alpha < \beta $. Then $\sum\limits_{n = 0}^\infty {\left( {{\alpha ^n} + \frac{{{{\left( { - 1} \right)}^n}}}{{{\beta ^n}}}} \right)} $ is equal to
$\frac{1}{{1 - \cos \,\theta }} - \frac{1}{{1 + \sin \,\theta \,}}$
$\frac{1}{{1 + \cos \,\theta }} + \frac{1}{{1 - \sin \,\theta \,}}$
$\frac{1}{{1 - \cos \,\theta }} + \frac{1}{{1 + \sin \,\theta \,}}$
$\frac{1}{{1 + \cos \,\theta }} - \frac{1}{{1 - \sin \,\theta \,}}$
The number of cubic polynomials $P(x)$ satisfying $P(1)=2, P(2)=4, P(3)=6, P(4)=8$ is
Consider the cubic equation $x^3+c x^2+b x+c=0$ where $a, b, c$ are real numbers. Which of the following statements is correct?
Below are four equations in $x$. Assume that $0 < r < 4$. Which of the following equations has the largest solution for $x$ ?
The number of distinct real roots of $x^4-4 x^3+12 x^2+x-1=0$ is
The number of real solutions of the equation $\mathrm{x}|\mathrm{x}+5|+2|\mathrm{x}+7|-2=0$ is .....................