Let $\alpha $ and $\beta $ be the roots of the quadratic equation ${x^2}\,\sin \,\theta  - x\,\left( {\sin \,\theta \cos \,\,\theta  + 1} \right) + \cos \,\theta  = 0\,\left( {0 < \theta  < {{45}^o}} \right)$ , and $\alpha  < \beta $.  Then $\sum\limits_{n = 0}^\infty  {\left( {{\alpha ^n} + \frac{{{{\left( { - 1} \right)}^n}}}{{{\beta ^n}}}} \right)} $ is equal to

  • [JEE MAIN 2019]
  • A

    $\frac{1}{{1 - \cos \,\theta }} - \frac{1}{{1 + \sin \,\theta \,}}$

  • B

    $\frac{1}{{1 + \cos \,\theta }} + \frac{1}{{1 - \sin \,\theta \,}}$

  • C

    $\frac{1}{{1 - \cos \,\theta }} + \frac{1}{{1 + \sin \,\theta \,}}$

  • D

    $\frac{1}{{1 + \cos \,\theta }} - \frac{1}{{1 - \sin \,\theta \,}}$

Similar Questions

Let $a, b, c$ be non-zero real numbers such that $a+b+c=0$, let $q=a^2+b^2+c^2$ and $r=a^4+b^4+c^4$. Then,

  • [KVPY 2014]

The product of all real roots of the equation ${x^2} - |x| - \,6 = 0$ is

Let $\alpha$ and $\beta$ be the roots of the equation $\mathrm{x}^{2}-\mathrm{x}-1=0 .$ If $\mathrm{p}_{\mathrm{k}}=(\alpha)^{\mathrm{k}}+(\beta)^{\mathrm{k}}, \mathrm{k} \geq 1,$ then which one of the following statements is not true?

  • [JEE MAIN 2020]

The number of cubic polynomials $P(x)$ satisfying $P(1)=2, P(2)=4, P(3)=6, P(4)=8$ is

  • [KVPY 2019]

If the roots of the equation $8{x^3} - 14{x^2} + 7x - 1 = 0$ are in $G.P.$, then the roots are