Let the sum of the maximum and the minimum values of the function $f(x)=\frac{2 x^2-3 x+8}{2 x^2+3 x+8}$ be $\frac{m}{n}$, where $\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$. Then $\mathrm{m}+\mathrm{n}$ is equal to :

  • [JEE MAIN 2024]
  • A

    $182$

  • B

     $217$

  • C

    $195$

  • D

     $201$

Similar Questions

For a real number $x$, let $[x]$ denote the largest integer less than or equal to $x$, and let $\{x\}=x-[x]$. The number of solutions $x$ to the equation $[x]\{x\}=5$ with $0 \leq x \leq 2015$ is

  • [KVPY 2015]

The number of real roots of the equation $5 + |2^x - 1| = 2^x(2^x - 2)$ is

  • [JEE MAIN 2019]

If ${x^2} + px + 1$ is a factor of the expression $a{x^3} + bx + c$, then

  • [IIT 1980]

Suppose the quadratic polynomial $p(x)=a x^2+b x+c$ has positive coefficient $a, b, c$ such that $b-a=c-b$. If $p(x)=0$ has integer roots $\alpha$ and $\beta$ then what could be the possible value of $\alpha+\beta+\alpha \beta$ if $0 \leq \alpha+\beta+\alpha \beta \leq 8$

  • [KVPY 2016]

The locus of the point $P=(a, b)$ where $a, b$ are real numbers such that the roots of $x^3+a x^2+b x+a=0$ are in arithmetic progression is

  • [KVPY 2011]