Suppose that $x$ and $y$ are positive number with $xy = \frac{1}{9};\,x\left( {y + 1} \right) = \frac{7}{9};\,y\left( {x + 1} \right) = \frac{5}{{18}}$ . The value of $(x + 1) (y + 1)$ equals
$\frac {8}{9}$
$\frac {16}{9}$
$\frac {10}{9}$
$\frac {35}{18}$
If ${x^2} + px + 1$ is a factor of the expression $a{x^3} + bx + c$, then
Let $f(x)=a x^2+b x+c$, where $a, b, c$ are integers, Suppose $f(1)=0,40 < f(6) < 50,60 < f(7) < 70$ and $1000 t < f(50) < 1000(t+1)$ for some integer $t$. Then, the value of $t$ is
The number of real solutions of the equation $|x{|^2}$-$3|x| + 2 = 0$ are
The sum of all non-integer roots of the equation $x^5-6 x^4+11 x^3-5 x^2-3 x+2=0$ is
The number of solutions of the equation $\log _{(x+1)}\left(2 x^{2}+7 x+5\right)+\log _{(2 x+5)}(x+1)^{2}-4=0, x\,>\,0$, is $....$