1.Relation and Function
hard

माना $\sum\limits_{k = 1}^{10} {f\,(a\, + \,k)} \, = \,16\,({2^{10}}\, - \,1)$ है, जहाँ सभी प्राकृत संख्याओं $x , y$
के लिए, फलन $f , f ( x + y )= f ( x ) f ( y )$ को संतुष्ट करता है तथा $f ( a )=2$ है। तो प्राकृत संख्या $^{\prime} a ^{\prime}$ बराबर है :

A

$4$

B

$16$

C

$2$

D

$3$

(JEE MAIN-2019)

Solution

From the given functional equation:

$f\left( x \right) = {2^x}\forall x \in N$

${2^{a + 1}} + {2^{a + 2}} + … + {2^{a + 10}} = 16\left( {{2^{10}} – 1} \right)$

${2^a}\left( {2 + {2^2} + … + {2^{10}}} \right) = 16\left( {{2^{10}} – 1} \right)$

${2^a}.\frac{{2.\left( {{2^{10}} – 1} \right)}}{1} = 16\left( {{2^{10}} – 1} \right)$

${2^{a + 1}} = 16 = {2^4}$

$a = 3$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.