माना $\sum\limits_{k = 1}^{10} {f\,(a\, + \,k)} \, = \,16\,({2^{10}}\, - \,1)$ है, जहाँ सभी प्राकृत संख्याओं $x , y$
के लिए, फलन $f , f ( x + y )= f ( x ) f ( y )$ को संतुष्ट करता है तथा $f ( a )=2$ है। तो प्राकृत संख्या $^{\prime} a ^{\prime}$ बराबर है :
$4$
$16$
$2$
$3$
सिद्ध कीजिए कि $f(x)=x^{2}$ द्वारा परिभाषित फलन $f: R \rightarrow R$ न तो एकैकी है और न आच्छादक है।
यदि $a +\alpha=1, b +\beta=2$ तथा $af ( x )+\alpha f \left(\frac{1}{ x }\right)$ $=b x +\frac{\beta}{ x }, x \neq 0$ हैं, तो $\frac{ f ( x )+ f \left(\frac{1}{ x }\right)}{ x +\frac{1}{ x }}$ बराबर है
उन बिन्दुओं, जहाँ वक्र
$f(x)=e^{8 x}-e^{6 x}-3 e^{4 x}-e^{2 x}+1, x \in \mathbb{R}, x$-अक्ष को
काटता है, की संख्या है_______
फलन $f(x) = \cos (x/3)$ का परिसर (रेंज) है
माना $[ x ]$ महत्तम पूर्णांक $\leq x$ है, जहों $x \in R$ है। यदि वास्तविक मान फलन $f(x)=\sqrt{\frac{[x] \mid-2}{[x] \mid-3}}$ का प्रांत $(-\infty, a) \cup[b, c) \cup[4, \infty), a < b < c$, है, तो $a+b+c$ का मान है