फलन $f(x) = \cos (x/3)$ का परिसर (रेंज) है
$( - 1/3,\;1/3)$
$[ - 1,\;1]$
$(1/3,\; - 1/3)$
$( - 3,\;3)$
$b$ व $c$ के वे मान जो कि सर्वसमिका $f(x + 1) - f(x) = 8x + 3$ को संतुष्ट करते है , जहा $f(x) = b{x^2} + cx + d$, है
माना $\mathrm{f}^1(\mathrm{x})=\frac{3 \mathrm{x}+2}{2 \mathrm{x}+3}, \mathrm{x} \in \mathrm{R}-\left\{\frac{-3}{2}\right\}$ है $\mathrm{n} \geq 2$ के लिए $\mathrm{f}^{\mathrm{n}}(\mathrm{x})=\mathrm{f}^1 0 \mathrm{f}^{\mathrm{n}-1}(\mathrm{x})$ द्वारा परिभाषित कीजिए। यदि $\mathrm{f}^5(\mathrm{x})=\frac{\mathrm{ax}+\mathrm{b}}{\mathrm{bx}+\mathrm{a}}, \operatorname{gcd}(\mathrm{a}, \mathrm{b})=1$, है, तो $\mathrm{a}+\mathrm{b}$ बराबर है_________.
एक फलन $\mathrm{f}: \mathbb{N} \rightarrow \mathbb{R}$, के लिए $\mathrm{f}(1)+2 \mathrm{f}(2)+3 \mathrm{f}(3)+\ldots+\mathrm{xf}(\mathrm{x})=\mathrm{x}(\mathrm{x}+1) \mathrm{f}(\mathrm{x}) ;$ $\mathrm{x} \geq 2$ तथा $\mathrm{f}(1)=1$ है तो $\frac{1}{\mathrm{f}(2022)}+\frac{1}{\mathrm{f}(2028)}$ बराबर है
माना $\mathrm{A}=\{1,2,3,4,5\}$ तथा $\mathrm{B}=\{1,2,3,4,5,6\}$ हैं। तो $f(1)+f(2)=f(4)-1$ को संतुष्ट करने वाले फलनों $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ की संख्या है
यदि फलन $f(x)=\log _e\left(4 x^2+11 x+6\right)+$ $\sin ^{-1}(4 x+3)+\cos ^{-1}\left(\frac{10 x+6}{3}\right)$ का प्रांत $(\alpha, \beta]$ है, तो $36|\alpha+\beta|$ बराबर है :