फलन $f(x) = \frac{{{{\sin }^{ - 1}}(x - 3)}}{{\sqrt {9 - {x^2}} }}$ का प्रान्त है
$[1, 2)$
$[2, 3)$
$[1, 2]$
$[2, 3]$
इस प्रश्न में सभी वास्तविक संख्याओं का समुच्चय $R$ द्वारा निर्देशित किया गया है। मान लीजिये कि प्रत्येक $x \in R$ के लिए फलन $f$ इस प्रकार है कि $f(x)+\left(x+\frac{1}{2}\right) f(1-x)=1$. इस स्थिति में $2 f(0)+3 f(1)$ का मान होगा :
माना $a, b, c \in R$ यदि $f(x)=a x^{2}+b x+c$ ऐसा है कि $a+b+c=3$ है तथा सभी $x, y \in R$ के लिए
$f(x+y)=f(x)+f(y)+x y$ है, तो $\sum_{n=1}^{10} f(n)$ बराबर है:
माना $f, g: N -\{1\} \rightarrow N , f(a)=\alpha$, जहाँ उन अभाज्य संख्याओं $p$, जिनके लिए $p ^\alpha$, $a$ को विभाजित करता है, की घातों में $\alpha$ अधिकतम है तथा $g(a)=a+1$, सभी $a \in N -\{1\}$ के लिए, द्वारा परिभाषित हैं। तब फलन $f+ g$
यदि फलन $\mathrm{f}(\mathrm{x})=\sec ^{-1}\left(\frac{2 \mathrm{x}}{5 \mathrm{x}+3}\right)$ का प्रांत $[\alpha, \beta) \cup(\gamma, \delta]$ है, तो $|3 \alpha+10(\beta+\gamma)+21 \delta|$ बराबर है_________|
यदि $f(x) = \frac{1}{2} - \tan \left( {\frac{{\pi x}}{2}} \right)$; $\left( { - 1 < x < 1} \right)$ तथा $g(x) = \sqrt {3 + 4x - 4{x^2}} $, तो $gof$ का प्रान्त होगा