અહી $\left(\begin{array}{l}n \\ k\end{array}\right)$ એ ${ }^{n} C_{k}$ દર્શાવે છે અને $\left[\begin{array}{l} n \\ k \end{array}\right]=\left\{\begin{array}{cc}\left(\begin{array}{c} n \\ k \end{array}\right), & \text { if } 0 \leq k \leq n \\ 0, & \text { otherwise }\end{array}\right.$ છે.
જો $A_{k}=\sum_{i=0}^{9}\left(\begin{array}{l}9 \\ i\end{array}\right)\left[\begin{array}{c}12 \\ 12-k+i\end{array}\right]+\sum_{i=0}^{8}\left(\begin{array}{c}8 \\ i\end{array}\right)\left[\begin{array}{c}13 \\ 13-k+i\end{array}\right]$
અને $A_{4}-A_{3}=190 \mathrm{p}$ હોય તો $p$ ની કિમંત મેળવો.
$50$
$51$
$48$
$49$
જો $\left( {\begin{array}{*{20}{c}}
{n\, - \,1} \\
r
\end{array}} \right)\,\, = \,\,\left( {\,{k^2}\, - \,3\,} \right)\,\,\left( {\begin{array}{*{20}{c}}
n \\
{r\, + \,1}
\end{array}} \right)\,$ તો $k\, \in \,\,..........$
$'ARRANGE'$ શબ્દોના અક્ષરો વડે ભિન્ન શબ્દો બનાવવામાં આવે છે. બધા જ શબ્દો શબ્દકોશ સ્વરૂપમાં મેળવીને લખવામાં આવે છે.આપેલા માહિતીને આધારે $'ARRANGE'$ શબ્દ શબ્દકોશમાં કેટલામાં ક્રમે આવશે ?
$4$ ઓફિસર અને $8$ કોન્સ્ટેબલ પૈકી $6$ વ્યક્તિઓને કેટલી રીતે પસંદ કરી શકાય કે જેમાં ઓછામાં ઓછા એક ઓફિસરનો સમાવેશ થાય ?
ભિન્ન રંગના પાંચ દડાને ભિન્ન કદના ત્રણ ખોખાંમાં મૂકવામાં આવે, દરેક ખોખું બધાં જ પાંચ દડા સમાવી શકે છે. એક પણ ખોખું ખાલી ન રહે તેવી રીતે દડા કેટલી રીતે મૂકી શકાય (ખોખામાં ક્રમ દર્શાવેલ નથી).
ચૂંટણીમાં, મતદારો ગમે તેટલા અરજદારોને મત આપી શકે પરંતુ ચુંટાયેલ સંખ્યા કરતા વધારે નહિ. $10$ અરજદારો પૈકી $4$ ચૂંટાયેલ છે. જો મતદારો ઓછામાં ઓછા એક અરજદારને મત આપે, તો તેઓ કેટલી રીતે મત આપી શકે ?