Let ${a_2},{a_3} \in R$ such that $\left| {{a_2} - {a_3}} \right| = 6$ and $f\left( x \right) = \left| {\begin{array}{*{20}{c}}
1&{{a_3}}&{{a_2}}\\
1&{{a_3}}&{2{a_2} - x}\\
1&{2{a_3} - x}&{{a_2}}
\end{array}} \right|,x \in R.$ Then the greatest value of $f(x)$ is

  • A

    $36$

  • B

    $24$

  • C

    $12$

  • D

    $9$

Similar Questions

The range of $f(x)=4 \sin ^{-1}\left(\frac{x^2}{x^2+1}\right)$ is

  • [JEE MAIN 2023]

The function $f$ satisfies the functional equation $3f(x) + 2f\left( {\frac{{x + 59}}{{x - 1}}} \right) = 10x + 30$ for all real $x \ne 1$. The value of $f(7)$ is

The domain of $f(x) = [\sin x] \cos \left( {\frac{\pi }{{[x - 1]}}} \right)$ is (where $[.]$ denotes $G.I.F.$)

Numerical value of the expression $\left| {\;\frac{{3{x^3} + 1}}{{2{x^2} + 2}}\;} \right|$ for $x = - 3$ is

Show that the function $f: R \rightarrow R$ defined as $f(x)=x^{2},$ is neither one-one nor onto.