Let $x$ denote the total number of one-one functions from a set $A$ with $3$ elements to a set $B$ with $5$ elements and $y$ denote the total number of one-one functions from the set $A$ to the set $A \times B$. Then ...... .
$y=273 x$
$2 y=91 x$
$y=91 x$
$2 y=273 x$
If $f(x)$ and $g(x)$ are functions satisfying $f(g(x))$ = $x^3 + 3x^2 + 3x + 4$ $f(x)$ = $log^3x + 3$, then slope of the tangent to the curve $y = g(x)$ at $x = \ -1$ is
Which one of the following is not bounded on the intervals as indicated
Let $R _{1}$ and $R _{2}$ be two relations defined as follows :
$R _{1}=\left\{( a , b ) \in R ^{2}: a ^{2}+ b ^{2} \in Q \right\}$ and $R _{2}=\left\{( a , b ) \in R ^{2}: a ^{2}+ b ^{2} \notin Q \right\}$
where $Q$ is the set of all rational numbers. Then
Let $f ( x )=2 x ^{ n }+\lambda, \lambda \in R , n \in N$, and $f (4)=133$, $f(5)=255$. Then the sum of all the positive integer divisors of $( f (3)- f (2))$ is
Show that the function $f: N \rightarrow N$ given by $f(x)=2 x,$ is one-one but not onto.