Let ${\left( {1 + x + {x^2}} \right)^{20}}\left( {2x + 1} \right) = {a_0} + {a_1}{x^1} + {a_2}{x^2} + ... + {a_{41}}{x^{41}}$ , then $\frac{{{a_0}}}{1} + \frac{{{a_1}}}{2} + .... + \frac{{{a_{41}}}}{{42}}$ is equal to 

  • A

    $\left( {\frac{{{2^{21}} - 1}}{{21}}} \right)$

  • B

    $\left( {\frac{{{3^{21}} - 1}}{{21}}} \right)$

  • C

    $\left( {\frac{{{2^{20}} - 1}}{{20}}} \right)$

  • D

    $\left( {\frac{{{3^{20}} - 1}}{{20}}} \right)$

Similar Questions

Value $\sum\limits_{r = 0}^{15} {\left( {{}^{15}{C_r}{}^{40}{C_{15}}{}^{20}{C_r} - {}^{35}{C_{15}}{}^{15}{C_r}{}^{25}{C_r}} \right)} $ is-

For integers $n$ and $r$, let $\left(\begin{array}{l} n \\ r \end{array}\right)=\left\{\begin{array}{ll}{ }^{n} C _{ r }, & \text { if } n \geq r \geq 0 \\ 0, & \text { otherwise }\end{array}\right.$

The maximum value of $k$ for which the sum $\sum_{i=0}^{k}\left(\begin{array}{c}10 \\ i\end{array}\right)\left(\begin{array}{c}15 \\ k-i\end{array}\right)+\sum_{i=0}^{k+1}\left(\begin{array}{c}12 \\ i\end{array}\right)\left(\begin{array}{c}13 \\ k+1-i\end{array}\right)$ exists, is equal to ...... .

  • [JEE MAIN 2021]

What is the coefficient of $x^{100}$ in $(1 + x + x^2 + x^3 +.... + x^{100})^3$ ?

${C_0}{C_r} + {C_1}{C_{r + 1}} + {C_2}{C_{r + 2}} + .... + {C_{n - r}}{C_n}$=

If $x + y = 1$, then $\sum\limits_{r = 0}^n {{r^2}{\,^n}{C_r}{x^r}{y^{n - r}}} $ equals