- Home
- Standard 11
- Mathematics
7.Binomial Theorem
hard
If $1+\left(2+{ }^{49} C _{1}+{ }^{49} C _{2}+\ldots .+{ }^{49} C _{49}\right)\left({ }^{50} C _{2}+{ }^{50} C _{4}+\right.$ $\ldots . .+{ }^{50} C _{ so }$ ) is equal to $2^{ n } . m$, where $m$ is odd, then $n$ $+m$ is equal to.
A
$98$
B
$97$
C
$96$
D
$99$
(JEE MAIN-2022)
Solution
$1+\left(1+2^{49}\right)\left(2^{49}-1\right)=2^{98}$
$m=1, n=98$
$m + n =99$
Standard 11
Mathematics