13.Statistics
normal

Let $y_1$ , $y_2$ , $y_3$ ,..... $y_n$ be $n$ observations. Let ${w_i} = l{y_i} + k\,\,\forall \,\,i = 1,2,3.....,n,$ where $l$ , $k$ are constants. If the mean of  $y_i's$ is  is $48$ and their standard deviation is $12$ , then mean of $w_i's$ is $55$ and standard deviation of $w_i's$  is $15$ , then values of $l$ and $k$ should be

A

$l = 2.5, k = 5$

B

$l = 1.25, k = 5$

C

$l = 1.25, k = -5$

D

$l = 2.5, k = -5$

Solution

Mean of ${\omega _i} = l$ (mean of  ${{y_i}}$) $+k$

$55 = l.48 + {\rm{k}}$          ………$(i)$

standard deviation of

${\omega _i} = l$ (standard deviation of ${{{\rm{y}}_i}}$)

$15 = l.12$             ………..$(ii)$

$l = 1.25$ and $\mathrm{k}=-5$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.