Let $S = 0$ is an ellipse whose vartices are the extremities of minor axis of the ellipse $E:\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1,a > b$ If $S = 0$ passes through the foci of $E$ , then its eccentricity is (considering the eccentricity of $E$ as $e$ )

  • A

    $\sqrt {\frac{{1 - 2{e^2}}}{{1 - {e^2}}}} $

  • B

    $\frac{1}{{\sqrt {1 + {e^2}} }}$

  • C

    $\frac{{1 - 2{e^2}}}{{1 - {e^2}}}$

  • D

    $\frac{{{e^2}}}{{1 + {e^2}}}$

Similar Questions

P is any point on the ellipse $9{x^2} + 36{y^2} = 324$, whose foci are $S$ and $S’$. Then $SP + S'P$ equals

Let the line $2 \mathrm{x}+3 \mathrm{y}-\mathrm{k}=0, \mathrm{k}>0$, intersect the $\mathrm{x}$-axis and $\mathrm{y}$-axis at the points $\mathrm{A}$ and $\mathrm{B}$, respectively. If the equation of the circle having the line segment $\mathrm{AB}$ as a diameter is $\mathrm{x}^2+\mathrm{y}^2-3 \mathrm{x}-2 \mathrm{y}=0$ and the length of the latus rectum of the ellipse $\mathrm{x}^2+9 \mathrm{y}^2=\mathrm{k}^2$ is $\frac{\mathrm{m}}{\mathrm{n}}$, where $\mathrm{m}$ and $\mathrm{n}$ are coprime, then $2 \mathrm{~m}+\mathrm{n}$ is equal to

  • [JEE MAIN 2024]

The length of the axes of the conic $9{x^2} + 4{y^2} - 6x + 4y + 1 = 0$, are

Let the length of the latus rectum of an ellipse with its major axis long $x -$ axis and center at the origin, be $8$. If the distance between the foci of this ellipse is equal to the length of the length of its minor axis, then which one of the following points lies on it?

  • [JEE MAIN 2019]

An ellipse and a hyperbola have the same centre origin, the same foci and the minor-axis of the one is the same as the conjugate axis of the other. If $ e_1, e_2 $ be their eccentricities respectively, then  $e_1^{ - 2} + e_2^{ - 2}$ equals