The eccentricity of an ellipse having centre at the origin, axes along the co-ordinate axes and passing through the points $(4,-1)$ and $(-2, 2)$ is
$\frac{1}{2}$
$\frac{2}{{\sqrt 5 }}$
$\frac{{\sqrt 3 }}{2}$
$\frac{{\sqrt 3 }}{4}$
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{16}+\frac {y^2} {9}=1$.
Find the coordinates of the foci, the vertices, the lengths of major and minor axes and the eccentricity of the ellipse $9 x^{2}+4 y^{2}=36$.
If $ \tan\ \theta _1. tan \theta _2 $ $= -\frac{{{a^2}}}{{{b^2}}}$ then the chord joining two points $\theta _1 \& \theta _2$ on the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}}$ $= 1$ will subtend a right angle at :
The eccentricity of the ellipse $9{x^2} + 5{y^2} - 30y = 0$, is
The minimum area of a triangle formed by any tangent to the ellipse $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{81}} = 1$ and the coordinate axes is