Find the equation for the ellipse that satisfies the given conditions : Vertices $(\pm 5,\,0),$ foci $(\pm 4,\,0)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Vertices $(\pm 5,\,0),$ foci $(±4,\,0)$

Here, the vertices are on the $x-$ axis.

Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,$ where a is the semi- major axis.

Accordingly, $a=5$ and $c=4$

It is known that $a^{2}=b^{2}+c^{2}$

$\therefore 5^{2}=b^{2}+4^{2}$

$\Rightarrow 25=b^{2}+16$

$\Rightarrow b^{2}=25-16$

$\Rightarrow b=\sqrt{9}=3$

Thus, the equation of the ellipse is $\frac{x^{2}}{5^{2}}+\frac{y^{2}}{3^{2}}=1$ or $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$

Similar Questions

Latus rectum of ellipse $4{x^2} + 9{y^2} - 8x - 36y + 4 = 0$ is

If the foci of an ellipse are $( \pm \sqrt 5 ,\,0)$ and its eccentricity is $\frac{{\sqrt 5 }}{3}$, then the equation of the ellipse is

$P$ is a variable point on the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ with $AA'$ as the major axis. Then the maximum value of the area of $\Delta APA'$ is

The locus of the foot of perpendicular drawn from the centre of the ellipse ${x^2} + 3{y^2} = 6$ on any tangent to it is

  • [JEE MAIN 2014]

The locus of the mid point of the line segment joining the point $(4,3)$ and the points on the ellipse $x^{2}+2 y^{2}=4$ is an ellipse with eccentricity

  • [JEE MAIN 2022]