- Home
- Standard 11
- Mathematics
Trigonometrical Equations
normal
Let $\theta \in [0, 4\pi ]$ satisfy the equation $(sin\, \theta + 2) (sin\, \theta + 3) (sin\, \theta + 4) = 6$ . If the sum of all the values of $\theta $ is of the form $k\pi $, then the value of $k$ is
A
$6$
B
$5$
C
$4$
D
$2$
Solution
$(\sin \theta+2)(\sin \theta+3)(\sin \theta+4)=6$
L.H.S. $\leq 6$ and $R . H . S .=6$
Therefore, equality only holds if
${\sin \theta=-1 \text { or } \theta=3 \pi / 2,7 \pi / 2} $
$\therefore $ ${\rm{ Sum }} = 5\pi \Rightarrow {\rm{k}} = 5$
Standard 11
Mathematics
Similar Questions
normal