જો $\theta \in [0, 4\pi ]$ એ સમીકરણ $(sin\, \theta + 2) (sin\, \theta + 3) (sin\, \theta + 4) = 6$ નું સમાધાન કરે છે અને $\theta $ ની બધી કિમતોનો સરવાળો $k\pi $ હોય તો $k$ ની કિમત મેળવો .
$6$
$5$
$4$
$2$
સમીકરણ $tan(\pi\, tanx) = cot(\pi\, cot\, x)$ ના ઉકેલગણ મેળવો
જો $1\,\, + \,\,\sin \theta \,\, + \,\,{\sin ^2}\theta + \ldots .\,\,to\,\,\infty \,\, = \,\,4\, + 2\sqrt 3 ,\,\,0\,\, < \,\theta \,\,\pi ,\,\,\theta \,\, \ne \,\frac{\pi }{2}\,,$ હોય તો $\theta = $
સમીકરણ $tanx\, -\, x = 0$ ના ન્યૂનતમ ધન બીજ ............ અંતરાલ માં છે
$\sin 7\theta = \sin 4\theta - \sin \theta $ અને $0 < \theta < \frac{\pi }{2}$ તેવી $\theta $ ની કિમતો મેળવો.
જો $\tan (\pi \cos \theta ) = \cot (\pi \sin \theta ),$ તો $\cos \left( {\theta - \frac{\pi }{4}} \right) =$