Trigonometrical Equations
hard

If the solution of the equation $\log _{\cos x} \cot x+4 \log _{\sin x} \tan x=1, x \in\left(0, \frac{\pi}{2}\right), \quad$ is $\sin ^{-1}\left(\frac{\alpha+\sqrt{\beta}}{2}\right)$, where $\alpha, \beta$ are integers, then $\alpha+\beta$ is equal to:

A

$3$

B

$5$

C

$6$

D

$4$

(JEE MAIN-2023)

Solution

$\log _{\cos x} \cot x+4 \log _{\sin x} \tan x=1$

$\Rightarrow \frac{\ln \cos x-\ln \sin x}{\ln \cos x}+4 \frac{\ln \sin x-\ln \cos x}{\ln \sin x}=1$

$\Rightarrow(\ln \sin x)^2-4(\ln \sin x)(\ln \cos x)+4(\ln \cos x)^2=1$

$\Rightarrow \ln \sin x=2 \ln \cos x$

$\Rightarrow \sin ^2 x+\sin x-1=0 \Rightarrow \sin x=\frac{-1+\sqrt{5}}{2}$

$\therefore \alpha+\beta=4$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.