Let $f : R \to R$ be a function defined by $f(x) =  - \frac{{|x{|^3} + |x|}}{{1 + {x^2}}}$; then the graph of $f(x)$ is lies in the :-

  • A

    $I$ and $II$ Quadrants

  • B

    $I$ and $III$ Quadrants

  • C

    $II$ and $III$ Qudrants

  • D

    $III$ and $IV$ Quadrants

Similar Questions

Let $f :R \to R$ be defined by $f(x)\,\, = \,\,\frac{x}{{1 + {x^2}}},\,x\, \in \,R.$ Then the range of $f$ is

  • [JEE MAIN 2019]

If $f(x) = \frac{1}{{\sqrt {x + 2\sqrt {2x - 4} } }} + \frac{1}{{\sqrt {x - 2\sqrt {2x - 4} } }}$ for $x > 2$, then $f(11) = $

The mid-point of the domain of the function $f(x)=\sqrt{4-\sqrt{2 x+5}}$ real $x$ is

  • [KVPY 2012]

The range of the function $f(x) = \frac{{x + 2}}{{|x + 2|}}$ is

Which of the following is true