- Home
- Standard 12
- Mathematics
1.Relation and Function
normal
Let $f : R \to R$ be a function defined by $f(x) = - \frac{{|x{|^3} + |x|}}{{1 + {x^2}}}$; then the graph of $f(x)$ is lies in the :-
A
$I$ and $II$ Quadrants
B
$I$ and $III$ Quadrants
C
$II$ and $III$ Qudrants
D
$III$ and $IV$ Quadrants
Solution
$f(x)=-\frac{|x|^3+|x|}{1+x^2}$
$f(-x)=-\frac{|-x|^3+|-x|}{1+(-x)^2}=-\frac{|x|^3+|x|}{1+x^2}=-f(x)$
Clearly, $f ( x )$ is an even function and $f ( x ) < 0$ for all $x > 0$.
Therefore, the graph of $f(x)$ lies in the third and fourth quadrant.
Standard 12
Mathematics
Similar Questions
normal