1.Relation and Function
normal

Let $f : R \to R$ be a function defined by $f(x) =  - \frac{{|x{|^3} + |x|}}{{1 + {x^2}}}$; then the graph of $f(x)$ is lies in the :-

A

$I$ and $II$ Quadrants

B

$I$ and $III$ Quadrants

C

$II$ and $III$ Qudrants

D

$III$ and $IV$ Quadrants

Solution

$f(x)=-\frac{|x|^3+|x|}{1+x^2}$

$f(-x)=-\frac{|-x|^3+|-x|}{1+(-x)^2}=-\frac{|x|^3+|x|}{1+x^2}=-f(x)$

Clearly, $f ( x )$ is an even function and $f ( x ) < 0$ for all $x > 0$.

Therefore, the graph of $f(x)$ lies in the third and fourth quadrant.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.