Let $f : R \to R$ be a function defined by $f(x) = - \frac{{|x{|^3} + |x|}}{{1 + {x^2}}}$; then the graph of $f(x)$ is lies in the :-
$I$ and $II$ Quadrants
$I$ and $III$ Quadrants
$II$ and $III$ Qudrants
$III$ and $IV$ Quadrants
Let $f(\theta)$ is distance of the line $( \sqrt {\sin \theta } )x + ( \sqrt {\cos \theta })y +1 = 0$ from origin. Then the range of $f(\theta)$ is -
The minimum value of the function $f(x) = {x^{10}} + {x^2} + \frac{1}{{{x^{12}}}} + \frac{1}{{\left( {1\ +\ {{\sec }^{ - 1}}\ x} \right)}}$ is
If a function $f(x)$ is such that $f\left( {x + \frac{1}{x}} \right) = {x^2} + \frac{1}{{{x^2}}};$ then $(fof )$ $\sqrt {11} )$ =
If function $f(x) = \frac{1}{2} - \tan \left( {\frac{{\pi x}}{2}} \right)$; $( - 1 < x < 1)$ and $g(x) = \sqrt {3 + 4x - 4{x^2}} $, then the domain of $gof$ is
The range of the function $f(x) = \frac{x}{{1 + \left| x \right|}},\,x \in R,$ is