Let $f : R \to R$ be a function defined by $f(x) = - \frac{{|x{|^3} + |x|}}{{1 + {x^2}}}$; then the graph of $f(x)$ is lies in the :-
$I$ and $II$ Quadrants
$I$ and $III$ Quadrants
$II$ and $III$ Qudrants
$III$ and $IV$ Quadrants
Let $f :R \to R$ be defined by $f(x)\,\, = \,\,\frac{x}{{1 + {x^2}}},\,x\, \in \,R.$ Then the range of $f$ is
If $f(x) = \frac{1}{{\sqrt {x + 2\sqrt {2x - 4} } }} + \frac{1}{{\sqrt {x - 2\sqrt {2x - 4} } }}$ for $x > 2$, then $f(11) = $
The mid-point of the domain of the function $f(x)=\sqrt{4-\sqrt{2 x+5}}$ real $x$ is
The range of the function $f(x) = \frac{{x + 2}}{{|x + 2|}}$ is
Which of the following is true