Let $f(x) = \frac{{x\,\, - \,\,1}}{{2\,{x^2}\,\, - \,\,7x\,\, + \,\,5}}$ . Then :
$x\overset{limit}{\rightarrow}1 \,\, f(x) = - \frac{1}{3}$
$x\overset{limit}{\rightarrow}0 \,\, f(x) = - \frac{1}{5}$
$f(x) \neq 0$
All of the above
The number of bijective functions $f :\{1,3,5, 7, \ldots \ldots . .99\} \rightarrow\{2,4,6,8, \ldots \ldots, 100\}$, such that $f(3) \geq f(9) \geq f(15) \geq f(21) \geq \ldots \ldots f(99), \quad$ is
Domain of the function $f(x) = \sqrt {2 - {{\sec }^{ - 1}}x} $ is
The range of $f(x)=4 \sin ^{-1}\left(\frac{x^2}{x^2+1}\right)$ is
Given the function $f(x) = \frac{{{a^x} + {a^{ - x}}}}{2},\;(a > 2)$. Then $f(x + y) + f(x - y) = $
Show that none of the operations given above has identity.