Let $f(x) = \frac{{x\,\, - \,\,1}}{{2\,{x^2}\,\, - \,\,7x\,\, + \,\,5}}$ . Then :
$x\overset{limit}{\rightarrow}1 \,\, f(x) = - \frac{1}{3}$
$x\overset{limit}{\rightarrow}0 \,\, f(x) = - \frac{1}{5}$
$f(x) \neq 0$
All of the above
Range of $f(x) = \;[x]\; - x$ is
If $f(x) = \frac{x}{{x - 1}}$, then $\frac{{f(a)}}{{f(a + 1)}} = $
Let $x$ be a non-zero rational number and $y$ be an irrational number. Then $xy$ is
If a function $g(x)$ is defined in $[-1, 1]$ and two vertices of an equilateral triangle are $(0, 0)$ and $(x, g(x))$ and its area is $\frac{\sqrt 3}{4}$ , then $g(x)$ equals :-
If $f(x) = \frac{x}{{x - 1}} = \frac{1}{y}$, then $f(y) = $