જો $f : R \to R$ માટે વિધેય $f(x) = - \frac{{|x{|^5} + |x|}}{{1 + {x^4}}}$;હોય તો $f(x)$ નો ગ્રાફ .......... ચરણમાંથી પસાર થાય.
$I$ અને $II$
$I$ અને $III$
$II$ અને $III$
$III$ અને $IV$
ધારો કે વિધેય :$f:\left[0, \frac{\pi}{2}\right]$ $ \rightarrow$ $R$, $f(x)=\sin x$ અને $g:\left[0, \frac{\pi}{2}\right] $ $\rightarrow$ $R$, $g(x)=\cos x$ દ્વારા આપેલ છે. સાબિત કરો કે $f$ અને $g$ એક-એક છે, પરંતુ $f+ g$ એક-એક નથી.
વિધેય $f(x) = \frac{x}{{1 + \left| x \right|}},\,x \in R,$ નો વિસ્તાર મેળવો.
જો $E = \{ 1,2,3,4\} $ અને $F = \{ 1,2\} $.તો $E$ થી $F$ પરના વ્યાપ્ત વિધેય ની સંખ્યા મેળવો.
જો $f(x)$ માટે $f\left( {\frac{{5x - 3y}}{2}} \right)\, = \,\frac{{5f(x) - 3f(y)}}{2}\,\forall x,y\in R$ $f(0) = 1, f '(0) = 2$ હોય તો $sin \ (f(x))$ નો આવર્તમાન મેળવો.
જો વિધેય $f(\mathrm{x})=\frac{\cos ^{-1} \sqrt{x^{2}-x+1}}{\sqrt{\sin ^{-1}\left(\frac{2 x-1}{2}\right)}}$ નો પ્રદેશ $(\alpha, \beta]$ હોય તો $\alpha+\beta$ ની કિમંત મેળવો.