- Home
- Standard 12
- Mathematics
माना $A$ एक ऐसा आव्यूह है कि $A \cdot\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$ एक अदिश आव्यूह है तथा $|3 A|=108$ है , तो $A^{2}$ बराबर है
$\left[ {\begin{array}{*{20}{c}}
4&{ - 32}\\
0&{36}
\end{array}} \right]$
$\left[ {\begin{array}{*{20}{c}}
4&0\\
{ - 32}&{36}
\end{array}} \right]$
$\left[ {\begin{array}{*{20}{c}}
{36}&0\\
{ - 32}&4
\end{array}} \right]$
$\left[ {\begin{array}{*{20}{c}}
{36}&{ - 32}\\
0&4
\end{array}} \right]$
Solution
$(d)$ Since
$A.\left[ {\begin{array}{*{20}{c}}
1&2\\
0&3
\end{array}} \right]$ is a scalar matrix and $\left| {3A} \right| = 108$
Suppose the scalar matrix is $\left[ {\begin{array}{*{20}{c}}
k&0\\
0&k
\end{array}} \right]$
$\therefore A.\left[ {\begin{array}{*{20}{c}}
1&2\\
0&3
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
k&0\\
0&k
\end{array}} \right]$
$ \Rightarrow A = \left[ {\begin{array}{*{20}{c}}
k&0\\
0&k
\end{array}} \right]{\left[ {\begin{array}{*{20}{c}}
1&2\\
0&3
\end{array}} \right]^{ – 1}}$
$\left[ {\therefore AB = C \Rightarrow AB{B^{ – 1}} = C{B^{ – 1}} \Rightarrow A = C{B^{ – 1}}} \right]$
$ \Rightarrow A = \frac{1}{3}\left[ {\begin{array}{*{20}{c}}
k&0\\
0&k
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
3&{ – 2}\\
0&1
\end{array}} \right]$
$ \Rightarrow A = \left[ {\begin{array}{*{20}{c}}
k&0\\
0&k
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&{ – \frac{2}{3}}\\
0&{\frac{1}{3}}
\end{array}} \right]$
$ \Rightarrow A = \left[ {\begin{array}{*{20}{c}}
k&{ – \frac{2}{3}k}\\
0&{\frac{k}{3}}
\end{array}} \right]\,\,\,\,\,\,\,\,\,…….\left( 1 \right)$
$\because$ $\left| {3A} \right| = 108$
$ \Rightarrow 108 = \left| {\begin{array}{*{20}{c}}
{3k}&{ – 2k}\\
0&k
\end{array}} \right|$
$ \Rightarrow 3{k^2} = 108 \Rightarrow {k^2} = 36 \Rightarrow k = \pm 6$
For $k=6$
$A = \left[ {\begin{array}{*{20}{c}}
6&{ – 4}\\
0&2
\end{array}} \right]$ ….From $(1)$
$ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{36}&{ – 32}\\
0&4
\end{array}} \right]$
For $k=-6$
$ \Rightarrow A = \left[ {\begin{array}{*{20}{c}}
{ – 6}&4\\
0&{ – 2}
\end{array}} \right]$ ….From$(1)$
$ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{36}&{ – 32}\\
0&4
\end{array}} \right]$