Let ${A_n} = \left( {\frac{3}{4}} \right) - {\left( {\frac{3}{4}} \right)^2} + {\left( {\frac{3}{4}} \right)^3} - ..... + {\left( { - 1} \right)^{n - 1}}{\left( {\frac{3}{4}} \right)^n}$ and $B_n \,= 1 - A_n$ . Then, the least odd natural number $p$ , so that ${B_n} > {A_n}$, for all $n \geq p$ is
$5$
$7$
$11$
$9$
Find the sum up to $20$ terms in the geometric progression $0.15,0.015,0.0015........$
Find the sum to indicated number of terms in each of the geometric progressions in $\left.1,-a, a^{2},-a^{3}, \ldots n \text { terms (if } a \neq-1\right)$
If $(y - x),\,\,2(y - a)$ and $(y - z)$ are in $H.P.$, then $x - a,$ $y - a,$ $z - a$ are in
If $a _{1}(>0), a _{2}, a _{3}, a _{4}, a _{5}$ are in a G.P., $a _{2}+ a _{4}=2 a _{3}+1$ and $3 a _{2}+ a _{3}=2 a _{4}$, then $a _{2}+ a _{4}+2 a _{5}$ is equal to
In a geometric progression consisting of positive terms, each term equals the sum of the next two terms. Then the common ratio of its progression is equals