3 and 4 .Determinants and Matrices
hard

Let $a_1,a_2,a_3,....,a_{10}$ be in $G.P.$ with $a_i > 0$ for $i = 1, 2,....,10$ and $S$ be the set of pairs $(r,k), r, k \in N$ (the set of natural numbers) for which

$\left| {\begin{array}{*{20}{c}}
  {{{\log }_e}\,a_1^ra_2^k}&{{{\log }_e}\,a_2^ra_3^k}&{{{\log }_e}\,a_3^ra_4^k} \\
  {{{\log }_e}\,a_4^ra_5^k}&{{{\log }_e}\,a_5^ra_6^k}&{{{\log }_e}\,a_6^ra_7^k} \\ 
  {{{\log }_e}\,a_7^ra_8^k}&{{{\log }_e}\,a_8^ra_9^k}&{{{\log }_e}\,a_9^ra_{10}^k} 
\end{array}} \right| = 0$

Then the number of elements in $S$, is

A

$4$

B

infinitely many

C

$2$

D

$10$

(JEE MAIN-2019)

Solution

For any value of $r$ determinant is zero.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.