माना $a _{1}, a _{2}, a _{3}, \ldots, a _{10}$ गुणोत्तर श्रेणी में है जिसमें $i =1,2, \ldots, 10$ के लिये $a _{ i }>0$ है तथा युग्मों $( r , k ), r , k \in N$ (प्राकृत संख्याओं का समुच्चय) का समुच्चय $S$ है जिसके लिये $\left|\begin{array}{lll}\log _{ e } a_{1}^{ r } a _{2}^{ k } & \log _{ e } a _{2}^{ r } a _{3}^{ k } & \log _{ e } a _{3}^{ r } a _{4}^{ k } \\ \log _{ e } a _{4}^{ r } a _{5}^{ k } & \log _{ e } a _{5}^{ r } a _{6}^{ k } & \log _{ e } a _{6}^{ r } a _{7}^{ k } \\ \log _{ e } a _{7}^{ r } a _{8}^{ k } & \log _{ e } a _{8}^{ r } a _{9}^{ k } & \log _{ e } a _{9}^{ r } a _{10}^{ k }\end{array}\right|=0$ है। तब $S$ में अवयवों की संख्या होगी
$4$
अनन्त
$2$
$10$
$\lambda $ के किस मान के लिये समीकरण के निकाय $2x - y - z = 12,$ $x - 2y + z = - 4,$ $x + y + \lambda z = 4$ का कोई हल नहीं होगा
माना $\lambda$ के सभी वास्तविक मानों, जिनके लिए समीकरण निकाय $ \lambda x+y+z=1 $ $ x+\lambda y+z=1 $ $ x+y+\lambda z=1$ असंगत है, का समुच्चय $\mathrm{S}$ है, तब $\sum_{\lambda \in S}\left(|\lambda|^2+|\lambda|\right)$ का मान है:
यदि रेखीय समीकरण निकाय
$2 x + y - z =7$
$x -3 y +2 z =1$
$x +4 y +\delta z = k$ है, जहाँ $\delta, k \in R$ के अनंत हल है, तो $\delta+ k$ बराबर है :
क्रमित युग्म $( a , b )$ जिसके लिये रेखीय समीकरण
निकाय
$3 x -2 y + z = b$
$5 x -8 y +9 z =3$
$2 x + y + az =-1$
का कोई हल नहीं है, होगा:
यदि समीकरण निकाय
$x+y+z=6$
$2 x+5 y+\alpha z=\beta$
$x+2 y+3 z=14$
के अनन्त हल है. तो $\alpha+\beta$ बराबर है