જો  $f (x) = a^x (a > 0)$ ને  $f( x) = f_1( x) + f_2( x)$ આ રીતે પણ લખી શકાય છે કે જ્યાં $f_1( x)$ એ યુગ્મ વિધેય છે અને $f_2( x)$ એ અયુગ્મ વિધેય છે તો $f_1( x + y) + f_1( x - y )$ મેળવો.

  • [JEE MAIN 2019]
  • A

    $2{f_1}\left( x \right){f_2}\left( y \right)$

  • B

    $2{f_1}\left( x \right){f_1}\left( y \right)$

  • C

    $2{f_1}\left( {x + y} \right){f_2}\left( {x - y} \right)$

  • D

    $2{f_1}\left( {x + y} \right){f_1}\left( {x - y} \right)$

Similar Questions

જો $f\left( x \right) = {\left( {\frac{3}{5}} \right)^x} + {\left( {\frac{4}{5}} \right)^x} - 1$ , $x \in R$  તો સમીકરણ $f(x) = 0$ ને . . .  . 

  • [JEE MAIN 2014]

જો $f(x) = \left\{ {\begin{array}{*{20}{c}}
{\,{x^3} - {x^2} + 10x - 5\,\,,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x \le 1\,\,\,\,\,\,\,\,\,\,\,\,}\\
{ - 2x + {{\log }_2}({b^2} - 2),\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x\, > 1\,\,\,\,\,\,\,\,\,\,\,\,}
\end{array}} \right.$ હોય તો $b$ ની કઇ કિમતો માટે $f(x)$ ની $x = 1$ મહત્તમ કિમત મળે

ધારો કે વિધેય :$f:\left[0, \frac{\pi}{2}\right]$ $ \rightarrow$ $R$, $f(x)=\sin x$ અને $g:\left[0, \frac{\pi}{2}\right] $ $\rightarrow$ $R$, $g(x)=\cos x$ દ્વારા આપેલ છે. સાબિત કરો કે $f$ અને $g$ એક-એક છે, પરંતુ $f+ g$ એક-એક નથી. 

વિધેય $f(x) = \sqrt {2 - {{\sec }^{ - 1}}x} $ નો પ્રદેશગણ ..... છે.  

$x = - 3$ માટે સમીકરણ $\left| {\;\frac{{3{x^3} + 1}}{{2{x^2} + 2}}\;} \right|$ ની કિમત મેળવો.