The range of values of the function $f\left( x \right) = \frac{1}{{2 - 3\sin x}}$ is
$\left[ { - 1,\frac{1}{5}} \right]$
$\left[ { - 1,5} \right]$
$\left( { - \infty , - 1} \right] \cup \left[ {\frac{1}{5},\infty } \right)$
$\left( { - \infty ,\frac{1}{5}} \right] \cup \left[ {1,\infty } \right)$
The domain of the function $f(x) = \frac{{{{\sin }^{ - 1}}(x - 3)}}{{\sqrt {9 - {x^2}} }}$ is
Let $x$ be a non-zero rational number and $y$ be an irrational number. Then $xy$ is
Let $f(x) = sin\,x,\,\,g(x) = x.$
Statement $1:$ $f(x)\, \le \,g\,(x)$ for $x$ in $(0,\infty )$
Statement $2:$ $f(x)\, \le \,1$ for $(x)$ in $(0,\infty )$ but $g(x)\,\to \infty$ as $x\,\to \infty$
Let $f(x)$ be a non-constant polynomial with real coefficients such that $f\left(\frac{1}{2}\right)=100$ and $f(x) \leq 100$ for all real $x$. Which of the following statements is NOT necessarily true?
Let $f(x)=\frac{x-1}{x+1}, x \in R-\{0,-1,1)$. If $f^{a+1}(x)=f\left(f^{n}(x)\right)$ for all $n \in N$, then $f^{\prime}(6)+f(7)$ is equal to