1.Relation and Function
normal

The range of values of the function $f\left( x \right) = \frac{1}{{2 - 3\sin x}}$ is

A

$\left[ { - 1,\frac{1}{5}} \right]$

B

$\left[ { - 1,5} \right]$

C

$\left( { - \infty , - 1} \right] \cup \left[ {\frac{1}{5},\infty } \right)$

D

$\left( { - \infty ,\frac{1}{5}} \right] \cup \left[ {1,\infty } \right)$

Solution

$-3 \leq 3 \sin x \leq 3$

$-1 \leq 2-3 \sin x \leq 5$

$\frac{1}{2-3 \sin x} \in(-\infty,-1] \cup\left[\frac{1}{5}, \infty\right)$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.