વિધેય $f(x) = - 1 + \frac{2}{{{2^x}^2 + 1}}$ ની મહત્તમ કિમત ........... થાય
$1$
$3/2$
$2/3$
$0$
જો $f(x)$ અને $g(x)$ એ બે બહુપદી છે કે જેથી $P ( x )=f\left( x ^{3}\right)+ xg \left( x ^{3}\right)$ એ $x^{2}+x+1$ દ્વારા વિભાજિત થાય છે તો $P(1)$ ની કિમંત મેળવો.
તદેવ વિધેય $I _{ N }: N \rightarrow N$, $I _{ N }$ $(x)=x$ $\forall $ $x \in N$ દ્વારા વ્યાખ્યાયિત છે. સાબિત કરો કે $I _{ N }$ વ્યાપ્ત હોવા છતાં $I _{ N }+ I _{ N }:$ $ N \rightarrow N$, $\left(I_{N}+I_{N}\right)(x)=$ $I_{N}(x)+I_{N}(x)$ $=x+x=2 x$ વ્યાપ્ત નથી.
જો $f(x) = \sin \log x$, તો $f(xy) + f\left( {\frac{x}{y}} \right) - 2f(x).\cos \log y =$
જો $2{\sin ^2}x + 3\sin x - 2 > 0$ અને ${x^2} - x - 2 < 0$ ($x$ એ રેડિયનમાં છે) તો $x$ નો અંતરાલ મેળવો.
સાબિત કરો કે માનાંક વિધેય $f : R \rightarrow R,$ $(x)=|x|$ દ્વારા વ્યાખ્યાયિત વિધેય એક-એક નથી અને વ્યાપ્ત પણ નથી. જો $x$ ધન અથવા શૂન્ય (અનૃણ) હોય, તો $|x| = x$ અને $x$ ઋણ હોય, તો $|x| = - x$.