જો $f(x) = {(x + 1)^2} - 1,\;\;(x \ge - 1)$ તો ગણ $S = \{ x:f(x) = {f^{ - 1}}(x)\} $ એ . . . .
ખાલીગણ
$\{0, -1\}$
$\{0, 1, -1\}$
$\left\{ {0,\; - 1,\;\frac{{ - 3 + i\sqrt 3 }}{2},\;\frac{{ - 3 - i\sqrt 3 }}{2}} \right\}$
જો $f(x) = {\cos ^{ - 1}}\left( {\frac{{2x}}{{1 + {x^2}}}} \right) + {\sin ^{ - 1}}\left( {\frac{{1 - {x^2}}}{{1 + {x^2}}}} \right)$ તો $f(1) + f(2)$ ની કિમંત મેળવો.
$\left[ {\frac{1}{2}} \right] + \left[ {\frac{1}{2} + \frac{1}{{100}}} \right] + \left[ {\frac{1}{2} + \frac{2}{{100}}} \right] + .... + \left[ {\frac{1}{2} + \frac{{99}}{{100}}} \right] = . . . . $ (કે જ્યાં $[x]$ એ મહતમ પૃણાંક વિધેય છે )
જો દરેક $x,\;y \in R$ માટે $f:R \to R$ ;$f(x + y) = f(x) + f(y)$ નું પાલન કરે છે અને $f(1) = 7$ તો $\sum\limits_{r = 1}^n {f(r)} =$
ધારો કે $f= R \rightarrow(0, \infty)$ વિકલનીય વિધેય છે,જ્યાં $5 f(x+y)=f(x) . f(y), \forall x, y \in R$. જો $f(3)=320$ હોય,તો $\sum \limits_{ n =0}^5 f( n )=.......$
વિધેય $f\left( x \right) = \left| {\sin \,4x} \right| + \left| {\cos \,2x} \right|$ નો આવર્તમાન મેળવો.