જો $\alpha $ અને $\beta $ એ સમીકરણ $x^2 + x + 1 = 0$ ના બીજ હોય તો $y (\ne 0) \in R$ માટે $\left| {\begin{array}{*{20}{c}}
{y\, + \,1}&\alpha &\beta \\
\alpha &{y\, + \,\beta }&1\\
\beta &1&{y\, + \,\alpha }
\end{array}} \right|$ મેળવો.
$y\,({y^2} - \,3)$
${y^3} - \,1$
$y^3$
$y\,({y^2} - \,1)$
ધારોકે $s$ એ $\theta \in[-\pi, \pi]$ ની એવી તમામ કિંમતોનો ગણ છે જેના માટે સુરેખ સમીકરણ સંહતિ
$x+y+\sqrt{3} z=0$
$-x+(\tan \theta) y+\sqrt{7} z=0$
$x+y+(\tan \theta) z=0$
ને અસાહજિક $(non-trivial)$ ઉકેલ છે.તો $\frac{120}{\pi} \sum_{\theta \in s} \theta=.........$
જો $a\, -\, 2b + c = 1$ હોય તો $\left| {\begin{array}{*{20}{c}}
{x + 1}&{x + 2}&{x + a} \\
{x + 2}&{x + 3}&{x + b} \\
{x + 3}&{x + 4}&{x + c}
\end{array}} \right|$ મેળવો.
જો $A = \left[ {\begin{array}{*{20}{c}}
1&{\sin \,\theta }&1\\
{ - \,\sin \,\theta }&1&{\sin \,\theta }\\
{ - 1}&{ - \,\sin \,\theta }&1
\end{array}} \right];$ તો દરેક $\theta \, \in \,\left( {\frac{{3\pi }}{4},\frac{{5\pi }}{4}} \right)$ માટે $det (A)$ ની કિમંત મેળવો.
સમીકરણ $\left| {\,\begin{array}{*{20}{c}}1&4&{20}\\1&{ - 2}&5\\1&{2x}&{5{x^2}}\end{array}\,} \right| = 0$ ના બીજ મેળવો.
અહી $S$ એ $\lambda$ ની બધીજ વાસ્તવિક કિમંતોનો ગણ છે કે જેથી સમીકરણો $\lambda x + y + z =1$ ; $x +\lambda y + z =1$ ; $x + y +\lambda z =1$ સુસંગત નથી તો $\sum_{\lambda \in S}\left(|\lambda|^2+|\lambda|\right)$ ની કિમંત મેળવો.