Let $\overrightarrow A = \hat iA\,\cos \theta + \hat jA\,\sin \theta $ be any vector. Another vector $\overrightarrow B $ which is normal to $\overrightarrow A$ is

  • A

    $\hat i\,B\,\cos \theta + j\,B\sin \theta $

  • B

    $\hat i\,B\,\sin \theta + j\,B\cos \theta $

  • C

    $\hat i\,B\,\sin \theta - j\,B\cos \theta $

  • D

    $\hat i\,B\,\cos \theta - j\,B\sin \theta $

Similar Questions

If $\overrightarrow{ A }=(2 \hat{ i }+3 \hat{ j }-\hat{ k }) \;m$ and $\overrightarrow{ B }=(\hat{ i }+2 \hat{ j }+2 \hat{ k })\; m$. The magnitude of component of vector $\overrightarrow{ A }$ along vector $\vec{B}$ will be $......m$.

  • [JEE MAIN 2022]

The angle between two vectors given by $6\hat i + 6\hat j - 3\hat k$ and $7\hat i + 4\hat j + 4\hat k$ is

The two vectors $\vec A$ and $\vec B$ that are parallel to each other are

Show that the scalar product of two vectors obeys the law of distributive.

Why the product of two vectors is not commutative ?