Let $f:(1,3) \rightarrow \mathrm{R}$ be a function defined by

$f(\mathrm{x})=\frac{\mathrm{x}[\mathrm{x}]}{1+\mathrm{x}^{2}},$ where $[\mathrm{x}]$ denotes the greatest

integer $\leq \mathrm{x} .$ Then the range of $f$ is

  • [JEE MAIN 2020]
  • A

    $\left(\frac{3}{5}, \frac{4}{5}\right)$

  • B

    $\left(\frac{2}{5}, \frac{3}{5}\right] \cup\left(\frac{3}{4}, \frac{4}{5}\right)$

  • C

    $\left(\frac{2}{5}, \frac{4}{5}\right]$

  • D

    $\left(\frac{2}{5}, \frac{1}{2}\right) \cup\left(\frac{3}{5}, \frac{4}{5}\right]$

Similar Questions

If $f:\left\{ {1,2,3,4} \right\} \to \left\{ {1,2,3,4} \right\}$ and $y=f(x)$ be a function such that $\left| {f\left( \alpha  \right) - \alpha } \right| \leqslant 1$,for $\alpha  \in \left\{ {1,2,3,4} \right\}$ then total number of such functions are

If $f(x + ay,\;x - ay) = axy$, then $f(x,\;y)$ is equal to

Solve $|x\,-\,2| + |x\,-\,1| = x\,-\,3$

Let $f : R \rightarrow R$ be a continuous function such that $f(3 x)-f(x)=x$. If $f(8)=7$, then $f(14)$ is equal to.

  • [JEE MAIN 2022]

Range of $f(x) = sin^{-1} (\sqrt {x^2 + x +1})$ is -