ધારો કે $f:(1,3) \rightarrow \mathrm{R}$ એ $f(\mathrm{x})=\frac{\mathrm{x}[\mathrm{x}]}{1+\mathrm{x}^{2}},$ મુજબ વિધેય વ્યાખ્યાતિ છે કે જ્યાં $[\mathrm{x}]$ એ મહતમ પૃણાંક વિધેય છે તો વિધેય $f$ નો વિસ્તાર મેળવો.
$\left(\frac{3}{5}, \frac{4}{5}\right)$
$\left(\frac{2}{5}, \frac{3}{5}\right] \cup\left(\frac{3}{4}, \frac{4}{5}\right)$
$\left(\frac{2}{5}, \frac{4}{5}\right]$
$\left(\frac{2}{5}, \frac{1}{2}\right) \cup\left(\frac{3}{5}, \frac{4}{5}\right]$
વિધેય $f\left( x \right) = \left| {\sin \,4x} \right| + \left| {\cos \,2x} \right|$ નો આવર્તમાન મેળવો.
વિધેય $f(x) = \int\limits_0^1 {t\,\sin \,\left( {x + \pi t} \right)} dt,\,x \in \,R$ નિ મહત્તમ કિમત ......... થાય.
વિધેય $\mathrm{f}(\mathrm{x})=\log _{\sqrt{5}}(3+\cos \left(\frac{3 \pi}{4}+\mathrm{x}\right)+\cos \left(\frac{\pi}{4}+\mathrm{x}\right)+\cos \left(\frac{\pi}{4}-\mathrm{x}\right)$
$-\cos \left(\frac{3 \pi}{4}-\mathrm{x}\right))$ નો વિસ્તાર મેળવો.
જો $f(x) = \cos (\log x)$, તો $f(x)f(y) - \frac{1}{2}[f(x/y) + f(xy)] = $
ધારો કે $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ એ નીચે આપેલ મુજબ વ્યાખ્યાયિત છે.
$f(x+y)+f(x-y)=2 f(x) f(y), f\left(\frac{1}{2}\right)=-1 $ તો $\sum_{\mathrm{k}=1}^{20} \frac{1}{\sin (\mathrm{k}) \sin (\mathrm{k}+\mathrm{f}(\mathrm{k}))}$ ની કિમંત મેળવો.