Function $f(x)={\left( {1 + \frac{1}{x}} \right)^x}$ then Domain of $f (x)$ is
$(-1, 0) \cup (0, \infty )$
$R - { 0 }$
$(-\infty , -1) \cup (0, \infty )$
$(0, \infty )$
If domain of the function $\log _e\left(\frac{6 x^2+5 x+1}{2 x-1}\right)+\cos ^{-1}\left(\frac{2 x^2-3 x+4}{3 x-5}\right)$ is $(\alpha, \beta) \cup(\gamma, \delta]$, then $18\left(\alpha^2+\beta^2+\gamma^2+\delta^2\right)$ is equal to $....$.
Let $f: R \rightarrow R$ be a function defined $f(x)=\frac{2 e^{2 x}}{e^{2 x}+\varepsilon}$. Then $f\left(\frac{1}{100}\right)+f\left(\frac{2}{100}\right)+f\left(\frac{3}{100}\right)+\ldots .+f\left(\frac{99}{100}\right)$ is equal to
Let $c, k \in R$. If $f(x)=(c+1) x^{2}+\left(1-c^{2}\right) x+2 k$ and $f(x+y)=f(x)+f(y)-x y$, for all $x, y \in R$, then the value of $|2( f (1)+ f (2)+ f (3)+\ldots \ldots+ f (20)) \mid$ is equal to
If $h\left( x \right) = \left[ {\ln \frac{x}{e}} \right] + \left[ {\ln \frac{e}{x}} \right]$ ,where [.] denotes greatest integer function, then which of the following is false ?
The domain of the function $f(x) = \frac{{{{\sin }^{ - 1}}(3 - x)}}{{\ln (|x|\; - 2)}}$ is