સંબંધ $R$ એ ગણ $A=\{1,2,3,4,5,6,7\}$ પર $R =\{(a, b):$ $a$ અને $b$ બંને અયુગ્મ અથવા બંને યુગ્મ $\} $ દ્વારા વ્યાખ્યાયિત છે. સાબિત કરો કે $R$ એ સામ્ય સંબંધ છે. એ સાથે જ સાબિત કરો કે $ \{1,3,5,7\}$ ના બધા જ ઘટકો $R$ દ્વારા એકબીજા સાથે સંબંધિત છે અને $\{2,4,6\}$ ના બધા જ ઘટકો $R$ દ્વારા એકબીજા સાથે સંબંધિત છે, પરંતુ $\{1,3,5,7\}$ નો કોઈ પણ ઘટક ઉપગણ $\{2,4,6\}$ ના કોઈ પણ ઘટક સાથે $R$ દ્વારા સંબંધિત નથી.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Given any element $a$ in $A$, both $a$ and $a$ must be either odd or even, so that $(a, a) \in R$ Further, $(a, \,b) \in R $ $\Rightarrow$ both $a$ and $b$ must be either odd or even $\Rightarrow(b, a) \in$ $R$ similarly, $(a,\, b) \in R$ and $(b,\, c) \in R$ $\Rightarrow$ all elements $a, \,b,\, c,$ must be either even or odd simultaneously $\Rightarrow(a, \,c) \in R$. Hence, $R$ is an equivalence relation. Further, all the elements of $\{1,3,5,7\}$ are related to each other, as all the elements of this subset are odd. Similarly, all the elements of the subset $ \{2,4,6\} $ are related to each other, as all of them are even. Also, no element of the subset $\{1,3,5,7\}$ can be related to any element of  $\{2,4,6\}$ , as elements of $\{1,3,5,7\}$ are odd, while elements of  $\{2,4,6\}$ are even.

Similar Questions

જો ગણ $A$ માં આઢ કરતાં નાની યુગ્મ પ્રાકૃતિક સંખ્યા છે અને $B$ માં સાત કરતાં નાની અવિભાજય સંખ્યા હોય તો $A $થી $B$ પરના સંબંધની સંખ્યા મેળવો 

The સંબંધ "congruence modulo $m$" is

જો $N$ એ $100$ કરતા વધારે પ્રાક્રુતિક સંખ્યાઓનો ગણ છે અને સંબંધ $R$ પર વ્યાખિયયિત છે :$R = \{(x,y) \in \,N × N :$ the numbers સંખ્યાઓ $x$ અને $y$ ને ઓછામા ઓછા બે વિભજ્યો છે.$\}.$ હોય તો $R$  એ ........

વાસ્તવિક સંખ્યા  $x$ અને $y$ માટે જો $ xRy \in $ $x - y + \sqrt 2 $ એ અંસમેય સંખ્યા હોય તો સંબંધ  $R$ એ . . . .

જો $n$ એ ચોકકસ ધન પૂર્ણાંક છે. જો સંબંધ $R$ એ ગણ $Z$  પર $aRb \Leftrightarrow n|a - b|$ દ્વારા વ્યાખ્યાયિત હોય તો $R$ એ . . .