मान लीजिए कि समुच्चय $A =\{1,2,3,4,5,6,7\}$ में $R =\{(a, b): a$ तथा $b$ दोनों ही या तो विषम हैं या सम हैं$\}$ द्वारा परिभाषित एक संबंध है। सिद्ध कीजिए कि $R$ एक तुल्यता संबंध है।

साथ ही सिद्ध कीजिए कि उपसमुच्चय $\{1,3,5,7\}$ के सभी अवयव एक दूसरे से संबंधित है, और उपसमुच्चय $\{2,4,6\}$ के सभी अवयव एक दूसरे से संबंधित है, परंतु उपसमुच्चय $\{1,3,5,7\}$ का कोई भी अवयव उपसमुच्चय $\{2,4,6\}$ के किसी भी अवयव से संबंधित नहीं है।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Given any element $a$ in $A$, both $a$ and $a$ must be either odd or even, so that $(a, a) \in R$ Further, $(a, \,b) \in R $ $\Rightarrow$ both $a$ and $b$ must be either odd or even $\Rightarrow(b, a) \in$ $R$ similarly, $(a,\, b) \in R$ and $(b,\, c) \in R$ $\Rightarrow$ all elements $a, \,b,\, c,$ must be either even or odd simultaneously $\Rightarrow(a, \,c) \in R$. Hence, $R$ is an equivalence relation. Further, all the elements of $\{1,3,5,7\}$ are related to each other, as all the elements of this subset are odd. Similarly, all the elements of the subset $ \{2,4,6\} $ are related to each other, as all of them are even. Also, no element of the subset $\{1,3,5,7\}$ can be related to any element of  $\{2,4,6\}$ , as elements of $\{1,3,5,7\}$ are odd, while elements of  $\{2,4,6\}$ are even.

Similar Questions

प्राकृत संख्याओं के समुच्चय पर संबंध $R $ इस प्रकार परिभाषित है कि $\{(a, b) : a$ तथा $b$  में $3$  का अन्तर है $\},$ तब $ R$  होगा

माना $\mathrm{A}=\{2,3,4\}$ तथा $\mathrm{B}=\{8,9,12\}$ हैं। तो संबंध $\mathrm{R}=\left\{\left(\left(\mathrm{a}_1, \mathrm{~b}_1\right),\left(\mathrm{a}_2, \mathrm{~b}_2\right)\right) \in(\mathrm{A} \times \mathrm{B}, \mathrm{A} \times \mathrm{B})\right.$ : $a_1, b_2$ को विभाजित करता है तथा $a_2, b_1$ को विभाजित करता है $\}$ में अवयवों की संख्या हैं :

  • [JEE MAIN 2023]

माना $\mathbb{N} \times \mathbb{N}$ पर एक संबंध $\mathrm{R},(\mathrm{a}, \mathrm{b}), \mathrm{R}(\mathrm{c}, \mathrm{d})$ यदि और केवल यदि $a d(b-c)=b c(a-d)$ है, द्वारा परिभाषित है। तो $R$

  • [JEE MAIN 2023]

यदि $R$  समुच्चय $A$ पर एक तुल्यता संबंध है, तब ${R^{ - 1}}$ है

माना $ A = \{1, 2, 3, 4\} $ तथा $R, A $ में संबंध है, जबकि दिया है $R = \{(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1), (3, 1), (1, 3)\}$  तब $R$  है