Let $f: N \rightarrow R$ be a function defined as $f(x)=4 x^{2}+12 x+15 .$ Show that $f: N \rightarrow S ,$ where, $S$ is the range of $f,$ is invertible. Find the inverse of $f$
Let $y$ be an arbitrary element of range $f$. Then $y=4 x^{2}+12 x+15,$ for some $x$ in $N ,$ which implies that $y=(2 x+3)^{2}+6 .$ This gives $x=\frac{((\sqrt{y-6})-3)}{2},$ as $y \geq 6$
Let us define $g: S \rightarrow N$ by $g(y)=\frac{((\sqrt{y-6})-3)}{2}$
Now $gof\,(x)=g(f(x))=g\left(4 x^{2}+12 x+15\right)$ $=g\left((2 x+3)^{2}+6\right)$
$=\frac{((\sqrt{(2 x+3)^{2}+6-6})-3)}{2}=\frac{(2 x+3-3)}{2}=x$
and $fog (y)=f\left(\frac{((\sqrt{y-6})-3)}{2}\right)=\left(\frac{2((\sqrt{y-6})-3)}{2}+3\right)^{2}+6$
$=((\sqrt{y-6})-3+3))^{2}+6=(\sqrt{y-6})^{2}+6=y-6+6=y$
Hence, $gof=I_{ N }$ and $f o g=I_{s} .$ This implies that $f$ is invertible with $f^{-1}=g$.
Let $f: N \rightarrow Y $ be a function defined as $f(x)=4 x+3,$ where, $Y =\{y \in N : y=4 x+3$ for some $x \in N \} .$ Show that $f$ is invertible. Find the inverse.
Inverse of the function $y = 2x - 3$ is
Let $f: W \rightarrow W$ be defined as $f(n)=n-1,$ if is odd and $f(n)=n+1,$ if $n$ is even. Show that $f$ is invertible. Find the inverse of $f$. Here, $W$ is the set of all whole numbers.
If the function $f(x) = x^5 + e^{\frac {x}{5}}$ and $g(x) = f^{-1} (x)$ , then the value of $\frac{1}{{g'\left( {1 + {e^{1/5}}} \right)}}$ is
State with reason whether following functions have inverse $f: \{1,2,3,4\}\rightarrow\{10\}$ with $f =\{(1,10),(2,10),(3,10),(4,10)\}$