Are the following pair of sets equal ? Give reasons.
$A = \{ x:x$ is a letter in the word ${\rm{FOLLOW }}\} $
$B = \{ y:y$ is a letter in the word $WOLF\} $
Given the sets $A=\{1,3,5\}, B=\{2,4,6\}$ and $C=\{0,2,4,6,8\},$ which of the following may be considered as universal set $(s)$ for all the three sets $A$, $B$ and $C$
$\{0,1,2,3,4,5,6,7,8,9,10\}$
Write the following as intervals :
$\{ x:x \in R, - 12\, < \,x\, < \, - 10\} $
State which of the following sets are finite or infinite :
$\{ x:x \in N$ and ${x^2} = 4\} $
Make correct statements by filling in the symbols $\subset$ or $ \not\subset $ in the blank spaces:
$\{ x:x$ is an even natural mumber $\} \ldots \{ x:x$ is an integer $\} $