Let $A=\{1,2\}, B=\{1,2,3,4\}, C=\{5,6\}$ and $D=\{5,6,7,8\} .$ Verify that
$A \times C$ is a subset of $B \times D$
To verify: $A \times C$ is a subset of $B \times D$
$A \times C=\{(1,5),(1,6),(2,5),(2,6)\}$
$A \times D=\{(1,5),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),$
$(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8)\}$
We can observe that all the elements of set $A \times C$ are the elements of set $B \times D$. Therefore, $A \times C$ is a subset of $B \times D$
If $A = \{2, 3, 5\}, B = \{2, 5, 6\},$ then $(A -B) × (A \cap B)$ is
If $P,Q$ and $R$ are subsets of a set $A$, then $R × (P^c \cup Q^c)^c =$
If the set $A$ has $p$ elements, $B$ has $q$ elements, then the number of elements in $A × B$ is
Let $A = \{1, 2, 3, 4, 5\}; B = \{2, 3, 6, 7\}$. Then the number of elements in $(A × B) \cap (B × A)$ is
If $A=\{-1,1\},$ find $A \times A \times A.$