Let $A=\{1,2\}, B=\{1,2,3,4\}, C=\{5,6\}$ and $D=\{5,6,7,8\} .$ Verify that

$A \times C$ is a subset of $B \times D$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

To verify: $A \times C$ is a subset of $B \times D$

$A \times C=\{(1,5),(1,6),(2,5),(2,6)\}$

$A \times D=\{(1,5),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),$

$(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8)\}$

We can observe that all the elements of set $A \times C$ are the elements of set $B \times D$. Therefore, $A \times C$ is a subset of $B \times D$

Similar Questions

If $A = \{2, 3, 5\}, B = \{2, 5, 6\},$ then $(A -B) × (A \cap B)$ is

If $P,Q$ and $R$ are subsets of a set $A$, then $R × (P^c  \cup  Q^c)^c =$

If the set $A$ has $p$ elements, $B$  has $q$ elements, then the number of elements in $A × B$ is

Let $A = \{1, 2, 3, 4, 5\}; B = \{2, 3, 6, 7\}$. Then the number of elements in $(A × B) \cap (B × A)$ is

If $A=\{-1,1\},$ find $A \times A \times A.$