मान लीजिए कि $A =\{1,2\}, B =\{1,2,3,4\}, C =\{5,6\}$ तथा $D =\{5,6,7,8\} .$ सत्यापित कीजिए कि
$A \times C , B \times D$ का एक उपसमुच्चय है।
To verify: $A \times C$ is a subset of $B \times D$
$A \times C=\{(1,5),(1,6),(2,5),(2,6)\}$
$A \times D=\{(1,5),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),$
$(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8)\}$
We can observe that all the elements of set $A \times C$ are the elements of set $B \times D$. Therefore, $A \times C$ is a subset of $B \times D$
यदि $A, B $ तथा $C$ तीन समुच्चय हैं, तब $A × (B \cup C) $ बराबर है
यदि $A = \{1, 2, 4\}, B = \{2, 4, 5\}, C = \{2, 5\},$ तब $ (A -B)× (B -C)$ है
यदि $ A = \{2, 3, 5\}, B = \{2, 5, 6\}, $ तब $(A -B) × (A \cap B) $ है
यदि समुच्चय $A$ में $3$ अवयव हैं तथा समुच्चय $B =\{3,4,5\},$ तो $( A \times B )$ में अवयवों की संख्या ज्ञात कीजिए।
यदि $A \times B =\{(p, q),(p, r),(m, q),(m, r)\},$ तो $A$ और $B$ को ज्ञात कीजिए।