मान लीजिए कि $A =\{1,2\}, B =\{1,2,3,4\}, C =\{5,6\}$ तथा $D =\{5,6,7,8\} .$ सत्यापित कीजिए कि

$A \times C , B \times D$ का एक उपसमुच्चय है।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

To verify: $A \times C$ is a subset of $B \times D$

$A \times C=\{(1,5),(1,6),(2,5),(2,6)\}$

$A \times D=\{(1,5),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),$

$(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8)\}$

We can observe that all the elements of set $A \times C$ are the elements of set $B \times D$. Therefore, $A \times C$ is a subset of $B \times D$

Similar Questions

यदि $A, B $ तथा $C$ तीन समुच्चय हैं, तब $A × (B \cup C) $ बराबर है

यदि $A = \{1, 2, 4\}, B = \{2, 4, 5\}, C = \{2, 5\},$ तब $ (A -B)× (B -C)$  है

यदि $ A = \{2, 3, 5\}, B = \{2, 5, 6\}, $ तब $(A -B) × (A \cap  B) $ है

यदि समुच्चय $A$ में $3$ अवयव हैं तथा समुच्चय $B =\{3,4,5\},$ तो $( A \times B )$ में अवयवों की संख्या ज्ञात कीजिए।

यदि $A \times B =\{(p, q),(p, r),(m, q),(m, r)\},$ तो $A$ और $B$ को ज्ञात कीजिए।