Let $A=\{1,2,3,4,6\} .$ Let $R$ be the relation on $A$ defined by $\{ (a,b):a,b \in A,b$ is exactly divisible by $a\} $
Write $R$ in roster form
$A = \{ 1,2,3,4,6\} ,R = \{ (a,b):a,b \in A,{\rm{ }}$ bisexactlydivisible by $a\} $
$R=\{(1,1),(1,2),(1,3),(1,4),(1,6),(2,2),(2,4),(2,6),$
$(3,3),(3,6),(4,4),(6,6)\}$
Let $A=\{1,2,3,4,5,6\} .$ Define a relation $R$ from $A$ to $A$ by $R=\{(x, y): y=x+1\}$
Depict this relation using an arrow diagram.
The Fig shows a relation between the sets $P$ and $Q$. Write this relation
in set - bulider form,
What is its domain and range ?
Let $A=\{1,2,3,4\}, B=\{1,5,9,11,15,16\}$ and $f=\{(1,5),(2,9),(3,1),(4,5),(2,11)\}$
Are the following true?
$f$ is a relation from $A$ to $B$
Justify your answer in each case.
The relation $R$ defined on the set of natural numbers as $\{(a, b) : a$ differs from $b$ by $3\}$, is given by
Let $R$ be the relation on $Z$ defined by $R = \{ (a,b):a,b \in Z,a - b$ is an integer $\} $ Find the domain and range of $R .$