જો $A=\{1,2,3,4,6\} .$ $R=\{ (a,b):a,b \in A,b$ એ $a$ વડે વિભાજ્ય છે. $\} $ થાય તે રીતે સંબંધ $R$ એ $A$ પર વ્યાખ્યાયિત છે, $R$ ને યાદીની રીતે લખો.
$A = \{ 1,2,3,4,6\} ,R = \{ (a,b):a,b \in A,{\rm{ }}$ bisexactlydivisible by $a\} $
$R=\{(1,1),(1,2),(1,3),(1,4),(1,6),(2,2),(2,4),(2,6),$
$(3,3),(3,6),(4,4),(6,6)\}$
જો $R$ એ $Q$ થી $Q$ પરનો $R=\{(a, b): a, b \in Q$ અને $a-b \in Z \}$ થાય તે રીતે વ્યાખ્યાયિત સંબંધ છે. તો બતાવો કે, જો $(a, b) \in R$ અને $(b, c) \in R$ તો $(a, c) \in R$
$A=\{1,2,3,4\}, B=\{1,5,9,11,15,16\}$ અને $f=\{(1,5),(2,9),(3,1),(4,5),(2,11)\}$ તો શું નીચેના વિધાનો સત્ય છે ? $f$ એ $A$ થી $B$ નો સંબંધ છે. પ્રત્યેક વિકલ્પમાં તમારા જવાબની સત્યાર્થતા ચકાસો.
જો $A=\{1,2,3,4,5,6\}$, $R=\{(x, y): y=x+1\}$ થાય તે રીતે સંબંધ $R, A$ થી $A$ પર વ્યાખ્યાયિત છે, તો આ સંબંધને કિરણ આકૃતિ દ્વારા દર્શાવો.
આકૃતિમાં $P$ થી $Q$ નો સંબંધ દશાવેલ છે. આ સંબંધને યાદીની રીતે લખો. તેનો પ્રદેશ અને વિસ્તાર શું થશે?
$R=\{(x, y): y=x+5,$ $x$ એ $4$ થી નાની પ્રાકૃતિક સંખ્યા છે, $x, y \in N \}$ થાય તે રીતે એક સંબંધ $N$ પર વ્યાખ્યાયિત છે. $R$ ને યાદીની રીતે લખો. $R$ નો પ્રદેશ તેમજ વિસ્તાર મેળવો.