मान लीजिए कि $A =\{1,2,3,4,6\} .$ मान लीजिए कि $R , A$ पर $\{(a, b): a, b \in A ,$ संख्या $a$ संख्या $b$ को यथावथ विभाजित करती है $\}$ द्वारा परिभाषित एक संबंध है। $R$ को रोस्टर रूप में लिखिए

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$A = \{ 1,2,3,4,6\} ,R = \{ (a,b):a,b \in A,{\rm{ }}$ bisexactlydivisible by $a\} $

$R=\{(1,1),(1,2),(1,3),(1,4),(1,6),(2,2),(2,4),(2,6),$

$(3,3),(3,6),(4,4),(6,6)\}$

Similar Questions

मान लीजिए कि $A =\{x, y, z\}$ और $B =\{1,2\}, A$ से $B$ के संबंधों की संख्या ज्ञात कीजिए।

$R =\left\{(a, b): a, b \in N \right.$ तथा $\left.a=b^{2}\right\}$ द्वारा परिभाषित $N$ से $N$ में, एक संबंध $R$ है। क्या निम्नलिखित कथन सत्य हैं ?

$(a, a) \in R ,$ सभी $a \in N$

मान लीजिए कि $R , Q$ से $Q$ में $R =\{(a, b): a, b \in Q$ तथा $a-b \in Z \} .$ द्वारा परिभाषित, एक संबंध है। सिद्ध कीजिए कि

$(a, b) \in R$ का तात्पर्य है कि $(b, a) \in R$

संबंध $R =\left\{\left(x, x^{3}\right): x\right.$ संख्या $10$ से कम एक अभाज्य संख्या है $\}$ को रोस्टर रूप में लिखिए।

$R =\left\{(a, b): a, b \in N \right.$ तथा $\left.a=b^{2}\right\}$ द्वारा परिभाषित $N$ से $N$ में, एक संबंध $R$ है। क्या निम्नलिखित कथन सत्य हैं ?

$(a, b) \in R ,$ का तात्पर्य है कि $(b, a) \in R$