Let $A, B,$ and $C$ be the sets such that $A \cup B=A \cup C$ and $A \cap B=A \cap C$. Show that $B = C$
Let, $A, B$ and $C$ be the sets such that $A \cup B=A \cup C$ and $A \cap B=A \cap C$.
To show: $B = C$
Let $x \in B$
$\Rightarrow x \in A \cup B \quad[B \subset A \cup B]$
$\Rightarrow x \in A \cup C \quad[A \cup B=A \cup C]$
$\Rightarrow x \in A$ or $x \in C$
Case $I$
Also, $x \in B$
$\therefore x \in A \cap B$
$\Rightarrow x \in A \cap C \quad[\because A \cap B=A \cap C]$
$\therefore x \in A$ and $x \in C$
$\therefore x \in C$
$\therefore B \subset C$
Similarly, we can show that $C \subset B$
$\therefore B=C$
The number of proper subsets of the set $\{1, 2, 3\}$ is
Write the following sets in the set-builder form :
${\rm{\{ 5,25,125,625\} }}$
The set $A = \{ x:x \in R,\,{x^2} = 16$ and $2x = 6\} $ equals
Write the following sets in the set-builder form :
$\{ 3,6,9,12\}$
Write the following intervals in set-builder form :
$\left( { - 3,0} \right)$