Let $A, B,$ and $C$ be the sets such that $A \cup B=A \cup C$ and $A \cap B=A \cap C$. Show that $B = C$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let, $A, B$ and $C$ be the sets such that $A \cup B=A \cup C$ and $A \cap B=A \cap C$.

To show: $B = C$

Let $x \in B$

$\Rightarrow x \in A \cup B \quad[B \subset A \cup B]$

$\Rightarrow x \in A \cup C \quad[A \cup B=A \cup C]$

$\Rightarrow x \in A$ or $x \in C$

Case $I$

Also, $x \in B$

$\therefore x \in A \cap B$

$\Rightarrow x \in A \cap C \quad[\because A \cap B=A \cap C]$

$\therefore x \in A$ and $x \in C$

$\therefore x \in C$

$\therefore B \subset C$

Similarly, we can show that $C \subset B$

$\therefore B=C$

Similar Questions

Match each of the set on the left in the roster form with the same set on the right described in set-builder form:

$(i)$ $\{1,2,3,6\}$ $(a)$ $\{ x:x$ is a prime number and a divisor $6\} $ 
$(ii)$ $\{2,3\}$ $(b)$ $\{ x:x$ is an odd natural number less than $10\} $
$(iii)$ $\{ M , A , T , H , E , I , C , S \}$ $(c)$ $\{ x:x$ is natural number and divisor of $6\} $
$(iv)$ $\{1,3,5,7,9\}$ $(d)$ $\{ x:x$ a letter of the work $\mathrm{MATHEMATICS}\} $

State whether each of the following set is finite or infinite :

The set of numbers which are multiple of $5$

List all the elements of the following sers :

$A = \{ x:x$ is an odd natural number $\} $

Which of the following are examples of the null set

$\{ x:x$ is a natural numbers, $x\, < \,5$ and $x\, > \,7\} $

Two finite sets have $m$ and $n$ elements. The total number of subsets of the first set is $56$ more than the total number of subsets of the second set. The values of $m$ and $n$ are