Let $A, B,$ and $C$ be the sets such that $A \cup B=A \cup C$ and $A \cap B=A \cap C$. Show that $B = C$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let, $A, B$ and $C$ be the sets such that $A \cup B=A \cup C$ and $A \cap B=A \cap C$.

To show: $B = C$

Let $x \in B$

$\Rightarrow x \in A \cup B \quad[B \subset A \cup B]$

$\Rightarrow x \in A \cup C \quad[A \cup B=A \cup C]$

$\Rightarrow x \in A$ or $x \in C$

Case $I$

Also, $x \in B$

$\therefore x \in A \cap B$

$\Rightarrow x \in A \cap C \quad[\because A \cap B=A \cap C]$

$\therefore x \in A$ and $x \in C$

$\therefore x \in C$

$\therefore B \subset C$

Similarly, we can show that $C \subset B$

$\therefore B=C$

Similar Questions

List all the subsets of the set $\{-1,0,1\}.$

Make correct statements by filling in the symbols $\subset$ or $ \not\subset $ in the blank spaces:

$\{ x:x$ is a circlein the plane $\}  \ldots \{ x:x$ is a circle in thesame plane with radius $1$ unit $\} $

List all the elements of the following sers :

$E = \{ x:x$ is a month of a year not having $ 31 $ days ${\rm{ }}\} $

State whether each of the following set is finite or infinite :

The set of letters in the English alphabet

What universal set $(s)$ would you propose for each of the following :

The set of right triangles