Let $A, B,$ and $C$ be the sets such that $A \cup B=A \cup C$ and $A \cap B=A \cap C$. Show that $B = C$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let, $A, B$ and $C$ be the sets such that $A \cup B=A \cup C$ and $A \cap B=A \cap C$.

To show: $B = C$

Let $x \in B$

$\Rightarrow x \in A \cup B \quad[B \subset A \cup B]$

$\Rightarrow x \in A \cup C \quad[A \cup B=A \cup C]$

$\Rightarrow x \in A$ or $x \in C$

Case $I$

Also, $x \in B$

$\therefore x \in A \cap B$

$\Rightarrow x \in A \cap C \quad[\because A \cap B=A \cap C]$

$\therefore x \in A$ and $x \in C$

$\therefore x \in C$

$\therefore B \subset C$

Similarly, we can show that $C \subset B$

$\therefore B=C$

Similar Questions

The number of proper subsets of the set $\{1, 2, 3\}$ is

Write the following sets in the set-builder form :

${\rm{\{ 5,25,125,625\} }}$

The set $A = \{ x:x \in R,\,{x^2} = 16$ and $2x = 6\} $ equals

Write the following sets in the set-builder form :

$\{ 3,6,9,12\}$

Write the following intervals in set-builder form :

$\left( { - 3,0} \right)$